File size: 22,218 Bytes
14114e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
import datetime
import gc
import multiprocessing as mp
import os
import queue
import socket
import sys
import time
import uuid
from contextlib import closing
from typing import List, Optional
import psutil
import torch
from sam3.logger import get_logger
logger = get_logger(__name__)
class Sam3VideoPredictor:
# a global dictionary that holds all inference states for this model (key is session_id)
_ALL_INFERENCE_STATES = {}
def __init__(
self,
checkpoint_path=None,
bpe_path=None,
has_presence_token=True,
geo_encoder_use_img_cross_attn=True,
strict_state_dict_loading=True,
async_loading_frames=False,
video_loader_type="cv2",
apply_temporal_disambiguation: bool = True,
):
self.async_loading_frames = async_loading_frames
self.video_loader_type = video_loader_type
from sam3.model_builder import build_sam3_video_model
self.model = (
build_sam3_video_model(
checkpoint_path=checkpoint_path,
bpe_path=bpe_path,
has_presence_token=has_presence_token,
geo_encoder_use_img_cross_attn=geo_encoder_use_img_cross_attn,
strict_state_dict_loading=strict_state_dict_loading,
apply_temporal_disambiguation=apply_temporal_disambiguation,
)
.cuda()
.eval()
)
@torch.inference_mode()
def handle_request(self, request):
"""Dispatch a request based on its type."""
request_type = request["type"]
if request_type == "start_session":
return self.start_session(
resource_path=request["resource_path"],
session_id=request.get("session_id", None),
)
elif request_type == "add_prompt":
return self.add_prompt(
session_id=request["session_id"],
frame_idx=request["frame_index"],
text=request.get("text", None),
points=request.get("points", None),
point_labels=request.get("point_labels", None),
bounding_boxes=request.get("bounding_boxes", None),
bounding_box_labels=request.get("bounding_box_labels", None),
obj_id=request.get("obj_id", None),
)
elif request_type == "remove_object":
return self.remove_object(
session_id=request["session_id"],
obj_id=request["obj_id"],
is_user_action=request.get("is_user_action", True),
)
elif request_type == "reset_session":
return self.reset_session(session_id=request["session_id"])
elif request_type == "close_session":
return self.close_session(session_id=request["session_id"])
else:
raise RuntimeError(f"invalid request type: {request_type}")
@torch.inference_mode()
def handle_stream_request(self, request):
"""Dispatch a stream request based on its type."""
request_type = request["type"]
if request_type == "propagate_in_video":
yield from self.propagate_in_video(
session_id=request["session_id"],
propagation_direction=request.get("propagation_direction", "both"),
start_frame_idx=request.get("start_frame_index", None),
max_frame_num_to_track=request.get("max_frame_num_to_track", None),
)
else:
raise RuntimeError(f"invalid request type: {request_type}")
def start_session(self, resource_path, session_id=None):
"""
Start a new inference session on an image or a video. Here `resource_path`
can be either a path to an image file (for image inference) or an MP4 file
or directory with JPEG video frames (for video inference).
If `session_id` is defined, it will be used as identifier for the
session. If it is not defined, the start_session function will create
a session id and return it.
"""
# get an initial inference_state from the model
inference_state = self.model.init_state(
resource_path=resource_path,
async_loading_frames=self.async_loading_frames,
video_loader_type=self.video_loader_type,
)
if not session_id:
session_id = str(uuid.uuid4())
self._ALL_INFERENCE_STATES[session_id] = {
"state": inference_state,
"session_id": session_id,
"start_time": time.time(),
}
logger.debug(
f"started new session {session_id}; {self._get_session_stats()}; "
f"{self._get_torch_and_gpu_properties()}"
)
return {"session_id": session_id}
def add_prompt(
self,
session_id: str,
frame_idx: int,
text: Optional[str] = None,
points: Optional[List[List[float]]] = None,
point_labels: Optional[List[int]] = None,
bounding_boxes: Optional[List[List[float]]] = None,
bounding_box_labels: Optional[List[int]] = None,
obj_id: Optional[int] = None,
):
"""Add text, box and/or point prompt on a specific video frame."""
logger.debug(
f"add prompt on frame {frame_idx} in session {session_id}: "
f"{text=}, {points=}, {point_labels=}, "
f"{bounding_boxes=}, {bounding_box_labels=}"
)
session = self._get_session(session_id)
inference_state = session["state"]
frame_idx, outputs = self.model.add_prompt(
inference_state=inference_state,
frame_idx=frame_idx,
text_str=text,
points=points,
point_labels=point_labels,
boxes_xywh=bounding_boxes,
box_labels=bounding_box_labels,
obj_id=obj_id,
)
return {"frame_index": frame_idx, "outputs": outputs}
def remove_object(
self,
session_id: str,
obj_id: int,
is_user_action: bool = True,
):
"""Remove an object from tracking."""
logger.debug(
f"remove object {obj_id} in session {session_id}: " f"{is_user_action=}"
)
session = self._get_session(session_id)
inference_state = session["state"]
self.model.remove_object(
inference_state=inference_state,
obj_id=obj_id,
is_user_action=is_user_action,
)
return {"is_success": True}
def propagate_in_video(
self,
session_id,
propagation_direction,
start_frame_idx,
max_frame_num_to_track,
):
"""Propagate the added prompts to get grounding results on all video frames."""
logger.debug(
f"propagate in video in session {session_id}: "
f"{propagation_direction=}, {start_frame_idx=}, {max_frame_num_to_track=}"
)
try:
session = self._get_session(session_id)
inference_state = session["state"]
if propagation_direction not in ["both", "forward", "backward"]:
raise ValueError(
f"invalid propagation direction: {propagation_direction}"
)
# First doing the forward propagation
if propagation_direction in ["both", "forward"]:
for frame_idx, outputs in self.model.propagate_in_video(
inference_state=inference_state,
start_frame_idx=start_frame_idx,
max_frame_num_to_track=max_frame_num_to_track,
reverse=False,
):
yield {"frame_index": frame_idx, "outputs": outputs}
# Then doing the backward propagation (reverse in time)
if propagation_direction in ["both", "backward"]:
for frame_idx, outputs in self.model.propagate_in_video(
inference_state=inference_state,
start_frame_idx=start_frame_idx,
max_frame_num_to_track=max_frame_num_to_track,
reverse=True,
):
yield {"frame_index": frame_idx, "outputs": outputs}
finally:
# Log upon completion (so that e.g. we can see if two propagations happen in parallel).
# Using `finally` here to log even when the tracking is aborted with GeneratorExit.
logger.debug(
f"propagation ended in session {session_id}; {self._get_session_stats()}"
)
def reset_session(self, session_id):
"""Reset the session to its initial state (as when it's initial opened)."""
logger.debug(f"reset session {session_id}")
session = self._get_session(session_id)
inference_state = session["state"]
self.model.reset_state(inference_state)
return {"is_success": True}
def close_session(self, session_id):
"""
Close a session. This method is idempotent and can be called multiple
times on the same "session_id".
"""
session = self._ALL_INFERENCE_STATES.pop(session_id, None)
if session is None:
logger.warning(
f"cannot close session {session_id} as it does not exist (it might have expired); "
f"{self._get_session_stats()}"
)
else:
del session
gc.collect()
logger.info(f"removed session {session_id}; {self._get_session_stats()}")
return {"is_success": True}
def _get_session(self, session_id):
session = self._ALL_INFERENCE_STATES.get(session_id, None)
if session is None:
raise RuntimeError(
f"Cannot find session {session_id}; it might have expired"
)
return session
def _get_session_stats(self):
"""Get a statistics string for live sessions and their GPU usage."""
# print both the session ids and their video frame numbers
live_session_strs = [
f"'{session_id}' ({session['state']['num_frames']} frames)"
for session_id, session in self._ALL_INFERENCE_STATES.items()
]
session_stats_str = (
f"live sessions: [{', '.join(live_session_strs)}], GPU memory: "
f"{torch.cuda.memory_allocated() // 1024**2} MiB used and "
f"{torch.cuda.memory_reserved() // 1024**2} MiB reserved"
f" (max over time: {torch.cuda.max_memory_allocated() // 1024**2} MiB used "
f"and {torch.cuda.max_memory_reserved() // 1024**2} MiB reserved)"
)
return session_stats_str
def _get_torch_and_gpu_properties(self):
"""Get a string for PyTorch and GPU properties (for logging and debugging)."""
torch_and_gpu_str = (
f"torch: {torch.__version__} with CUDA arch {torch.cuda.get_arch_list()}, "
f"GPU device: {torch.cuda.get_device_properties(torch.cuda.current_device())}"
)
return torch_and_gpu_str
def shutdown(self):
"""Shutdown the predictor and clear all sessions."""
self._ALL_INFERENCE_STATES.clear()
class Sam3VideoPredictorMultiGPU(Sam3VideoPredictor):
def __init__(self, *model_args, gpus_to_use=None, **model_kwargs):
if gpus_to_use is None:
# if not specified, use only the current GPU by default
gpus_to_use = [torch.cuda.current_device()]
IS_MAIN_PROCESS = os.getenv("IS_MAIN_PROCESS", "1") == "1"
if IS_MAIN_PROCESS:
gpus_to_use = sorted(set(gpus_to_use))
logger.info(f"using the following GPU IDs: {gpus_to_use}")
assert len(gpus_to_use) > 0 and all(isinstance(i, int) for i in gpus_to_use)
assert all(0 <= i < torch.cuda.device_count() for i in gpus_to_use)
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = f"{self._find_free_port()}"
os.environ["RANK"] = "0"
os.environ["WORLD_SIZE"] = f"{len(gpus_to_use)}"
self.gpus_to_use = gpus_to_use
self.rank = int(os.environ["RANK"])
self.world_size = int(os.environ["WORLD_SIZE"])
self.rank_str = f"rank={self.rank} with world_size={self.world_size}"
self.device = torch.device(f"cuda:{self.gpus_to_use[self.rank]}")
torch.cuda.set_device(self.device)
self.has_shutdown = False
if self.rank == 0:
logger.info("\n\n\n\t*** START loading model on all ranks ***\n\n")
logger.info(f"loading model on {self.rank_str} -- this could take a while ...")
super().__init__(*model_args, **model_kwargs)
logger.info(f"loading model on {self.rank_str} -- DONE locally")
if self.world_size > 1 and self.rank == 0:
# start the worker processes *after* the model is loaded in the main process
# so that the main process can run torch.compile and fill the cache first
self._start_worker_processes(*model_args, **model_kwargs)
for rank in range(1, self.world_size):
self.command_queues[rank].put(("start_nccl_process_group", None))
self._start_nccl_process_group()
if self.rank == 0:
logger.info("\n\n\n\t*** DONE loading model on all ranks ***\n\n")
@torch.inference_mode()
def handle_request(self, request):
"""Dispatch a request based on its type."""
if self.has_shutdown:
raise RuntimeError(
"cannot handle request after the predictor has shutdown; please create a new predictor"
)
# when starting a session, we need to create a session id before dispatching
# the request to the workers
if request["type"] == "start_session" and request.get("session_id") is None:
request["session_id"] = str(uuid.uuid4())
# dispatch the request to all worker processes
if self.world_size > 1 and self.rank == 0:
for rank in range(1, self.world_size):
self.command_queues[rank].put((request, False))
response = super().handle_request(request)
if self.world_size > 1:
torch.distributed.barrier() # wait for all ranks to finish
return response
@torch.inference_mode()
def handle_stream_request(self, request):
"""Dispatch a stream request based on its type."""
if self.has_shutdown:
raise RuntimeError(
"cannot handle request after the predictor has shutdown; please create a new predictor"
)
# dispatch the request to all worker processes
if self.world_size > 1 and self.rank == 0:
for rank in range(1, self.world_size):
self.command_queues[rank].put((request, True))
yield from super().handle_stream_request(request)
if self.world_size > 1:
torch.distributed.barrier() # wait for all ranks to finish
def _start_worker_processes(self, *model_args, **model_kwargs):
"""Start worker processes for handling model inference."""
world_size = self.world_size
logger.info(f"spawning {world_size - 1} worker processes")
# Use "spawn" (instead of "fork") for different PyTorch or CUDA context
mp_ctx = mp.get_context("spawn")
self.command_queues = {rank: mp_ctx.Queue() for rank in range(1, world_size)}
self.result_queues = {rank: mp_ctx.Queue() for rank in range(1, world_size)}
parent_pid = os.getpid()
for rank in range(1, world_size):
# set the environment variables for each worker process
os.environ["IS_MAIN_PROCESS"] = "0" # mark this as a worker process
os.environ["RANK"] = f"{rank}"
worker_process = mp_ctx.Process(
target=Sam3VideoPredictorMultiGPU._worker_process_command_loop,
args=(
rank,
world_size,
self.command_queues[rank],
self.result_queues[rank],
model_args,
model_kwargs,
self.gpus_to_use,
parent_pid,
),
daemon=True,
)
worker_process.start()
# revert the environment variables for the main process
os.environ["IS_MAIN_PROCESS"] = "1"
os.environ["RANK"] = "0"
# wait for all the worker processes to load the model and collect their PIDs
self.worker_pids = {}
for rank in range(1, self.world_size):
# a large timeout to cover potentially long model loading time due to compilation
_, worker_pid = self.result_queues[rank].get(timeout=7200)
self.worker_pids[rank] = worker_pid
logger.info(f"spawned {world_size - 1} worker processes")
def _start_nccl_process_group(self):
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
if world_size == 1:
return
logger.debug(f"starting NCCL process group on {rank=} with {world_size=}")
assert not torch.distributed.is_initialized()
# use the "env://" init method with environment variables set in start_worker_processes
# a short 3-min timeout to quickly detect any synchronization failures
timeout_sec = int(os.getenv("SAM3_COLLECTIVE_OP_TIMEOUT_SEC", "180"))
timeout = datetime.timedelta(seconds=timeout_sec)
torch.distributed.init_process_group(
backend="nccl",
init_method="env://",
timeout=timeout,
device_id=self.device,
)
# warm-up the NCCL process group by running a dummy all-reduce
tensor = torch.ones(1024, 1024).cuda()
torch.distributed.all_reduce(tensor)
logger.debug(f"started NCCL process group on {rank=} with {world_size=}")
def _find_free_port(self) -> int:
"""
Find a free port (a random free port from 1024 to 65535 will be selected)
https://stackoverflow.com/questions/1365265/on-localhost-how-do-i-pick-a-free-port-number)
"""
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
s.bind(("", 0))
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
return s.getsockname()[1]
@staticmethod
def _worker_process_command_loop(
rank,
world_size,
command_queue,
result_queue,
model_args,
model_kwargs,
gpus_to_use,
parent_pid,
):
"""
The command loop for each worker process. It listens to commands from the main process
and executes them using the model.
"""
logger.info(f"starting worker process {rank=} with {world_size=}")
# verify that the environment variables are set correctly
assert int(os.environ["IS_MAIN_PROCESS"]) == 0
assert int(os.environ["RANK"]) == rank
assert int(os.environ["WORLD_SIZE"]) == world_size
# load the model in this worker process
predictor = Sam3VideoPredictorMultiGPU(
*model_args, gpus_to_use=gpus_to_use, **model_kwargs
)
logger.info(f"started worker {rank=} with {world_size=}")
# return the worker process id to the main process for bookkeeping
worker_pid = os.getpid()
result_queue.put(("load_model", worker_pid))
# wait for the command to start the NCCL process group
request_type, _ = command_queue.get(timeout=7200)
assert request_type == "start_nccl_process_group"
predictor._start_nccl_process_group()
# keep listening to commands from the main process
while True:
try:
request, is_stream_request = command_queue.get(timeout=5.0)
if request == "shutdown":
logger.info(f"worker {rank=} shutting down")
torch.distributed.destroy_process_group()
result_queue.put(("shutdown", True)) # acknowledge the shutdown
sys.exit(0)
logger.debug(f"worker {rank=} received request {request['type']=}")
if is_stream_request:
for _ in predictor.handle_stream_request(request):
pass # handle stream requests in a generator fashion
else:
predictor.handle_request(request)
except queue.Empty:
# Usually Python's multiprocessing module will shutdown all the daemon worker
# processes when the main process exits gracefully. However, the user may kill
# the main process using SIGKILL and thereby leaving no chance for the main process
# to clean up its daemon child processes. So here we manually check whether the
# parent process still exists (every 5 sec as in `command_queue.get` timeout).
if not psutil.pid_exists(parent_pid):
logger.info(
f"stopping worker {rank=} as its parent process has exited"
)
sys.exit(1)
except Exception as e:
logger.error(f"worker {rank=} exception: {e}", exc_info=True)
def shutdown(self):
"""Shutdown all worker processes."""
if self.rank == 0 and self.world_size > 1:
logger.info(f"shutting down {self.world_size - 1} worker processes")
for rank in range(1, self.world_size):
self.command_queues[rank].put(("shutdown", False))
torch.distributed.destroy_process_group()
for rank in range(1, self.world_size):
self.result_queues[rank].get() # wait for the worker to acknowledge
logger.info(f"shut down {self.world_size - 1} worker processes")
self.has_shutdown = True
super().shutdown()
|