File size: 18,594 Bytes
14114e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
import numpy as np
import torch
import torch.nn.functional as F
from numpy.typing import NDArray
from sam3.model.edt import edt_triton
def sample_box_points(
masks: torch.Tensor,
noise: float = 0.1, # SAM default
noise_bound: int = 20, # SAM default
top_left_label: int = 2,
bottom_right_label: int = 3,
) -> tuple[NDArray, NDArray]:
"""
Sample a noised version of the top left and bottom right corners of a given `bbox`
Inputs:
- masks: [B, 1, H, W] tensor
- noise: noise as a fraction of box width and height, dtype=float
- noise_bound: maximum amount of noise (in pure pixels), dtype=int
Returns:
- box_coords: [B, num_pt, 2], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.float
- box_labels: [B, num_pt], label 2 is reserverd for top left and 3 for bottom right corners, dtype=torch.int32
"""
device = masks.device
box_coords = mask_to_box(masks)
B, _, H, W = masks.shape
box_labels = torch.tensor(
[top_left_label, bottom_right_label], dtype=torch.int, device=device
).repeat(B)
if noise > 0.0:
if not isinstance(noise_bound, torch.Tensor):
noise_bound = torch.tensor(noise_bound, device=device)
bbox_w = box_coords[..., 2] - box_coords[..., 0]
bbox_h = box_coords[..., 3] - box_coords[..., 1]
max_dx = torch.min(bbox_w * noise, noise_bound)
max_dy = torch.min(bbox_h * noise, noise_bound)
box_noise = 2 * torch.rand(B, 1, 4, device=device) - 1
box_noise = box_noise * torch.stack((max_dx, max_dy, max_dx, max_dy), dim=-1)
box_coords = box_coords + box_noise
img_bounds = (
torch.tensor([W, H, W, H], device=device) - 1
) # uncentered pixel coords
box_coords.clamp_(torch.zeros_like(img_bounds), img_bounds) # In place clamping
box_coords = box_coords.reshape(-1, 2, 2) # always 2 points
box_labels = box_labels.reshape(-1, 2)
return box_coords, box_labels
def mask_to_box(masks: torch.Tensor):
"""
compute bounding box given an input mask
Inputs:
- masks: [B, 1, H, W] tensor
Returns:
- box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor
"""
B, _, h, w = masks.shape
device = masks.device
mask_area = masks.sum(dim=(-1, -2))
xs = torch.arange(w, device=device, dtype=torch.int32)
ys = torch.arange(h, device=device, dtype=torch.int32)
grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy")
grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w)
grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w)
min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1)
max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1)
min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1)
max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1)
bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1)
bbox_coords = torch.where(
mask_area[..., None] > 0, bbox_coords, torch.zeros_like(bbox_coords)
)
return bbox_coords
def sample_random_points_from_errors(gt_masks, pred_masks, num_pt=1):
"""
Sample `num_pt` random points (along with their labels) independently from the error regions.
Inputs:
- gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool
- pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None
- num_pt: int, number of points to sample independently for each of the B error maps
Outputs:
- points: [B, num_pt, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point
- labels: [B, num_pt], dtype=torch.int32, where 1 means positive clicks and 0 means
negative clicks
"""
if pred_masks is None: # if pred_masks is not provided, treat it as empty
pred_masks = torch.zeros_like(gt_masks)
assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1
assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape
assert num_pt >= 0
B, _, H_im, W_im = gt_masks.shape
device = gt_masks.device
# false positive region, a new point sampled in this region should have
# negative label to correct the FP error
fp_masks = ~gt_masks & pred_masks
# false negative region, a new point sampled in this region should have
# positive label to correct the FN error
fn_masks = gt_masks & ~pred_masks
# whether the prediction completely match the ground-truth on each mask
all_correct = torch.all((gt_masks == pred_masks).flatten(2), dim=2)
all_correct = all_correct[..., None, None]
# channel 0 is FP map, while channel 1 is FN map
pts_noise = torch.rand(B, num_pt, H_im, W_im, 2, device=device)
# sample a negative new click from FP region or a positive new click
# from FN region, depend on where the maximum falls,
# and in case the predictions are all correct (no FP or FN), we just
# sample a negative click from the background region
pts_noise[..., 0] *= fp_masks | (all_correct & ~gt_masks)
pts_noise[..., 1] *= fn_masks
pts_idx = pts_noise.flatten(2).argmax(dim=2)
labels = (pts_idx % 2).to(torch.int32)
pts_idx = pts_idx // 2
pts_x = pts_idx % W_im
pts_y = pts_idx // W_im
points = torch.stack([pts_x, pts_y], dim=2).to(torch.float)
return points, labels
def sample_one_point_from_error_center(gt_masks, pred_masks, padding=True):
"""
Sample 1 random point (along with its label) from the center of each error region,
that is, the point with the largest distance to the boundary of each error region.
This is the RITM sampling method from https://github.com/saic-vul/ritm_interactive_segmentation/blob/master/isegm/inference/clicker.py
Inputs:
- gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool
- pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None
- padding: if True, pad with boundary of 1 px for distance transform
Outputs:
- points: [B, 1, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point
- labels: [B, 1], dtype=torch.int32, where 1 means positive clicks and 0 means negative clicks
"""
if pred_masks is None:
pred_masks = torch.zeros_like(gt_masks)
assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1
assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape
B, _, H, W = gt_masks.shape
# false positive region, a new point sampled in this region should have
# negative label to correct the FP error
fp_masks = (~gt_masks & pred_masks).squeeze(1)
# false negative region, a new point sampled in this region should have
# positive label to correct the FN error
fn_masks = (gt_masks & ~pred_masks).squeeze(1)
if padding:
padded_fp_masks = torch.zeros(
B, H + 2, W + 2, dtype=fp_masks.dtype, device=fp_masks.device
)
padded_fp_masks[:, 1 : H + 1, 1 : W + 1] = fp_masks
padded_fn_masks = torch.zeros(
B, H + 2, W + 2, dtype=fp_masks.dtype, device=fp_masks.device
)
padded_fn_masks[:, 1 : H + 1, 1 : W + 1] = fn_masks
else:
padded_fp_masks = fp_masks
padded_fn_masks = fn_masks
fn_mask_dt = edt_triton(padded_fn_masks)
fp_mask_dt = edt_triton(padded_fp_masks)
if padding:
fn_mask_dt = fn_mask_dt[:, 1:-1, 1:-1]
fp_mask_dt = fp_mask_dt[:, 1:-1, 1:-1]
fn_max, fn_argmax = fn_mask_dt.reshape(B, -1).max(dim=-1)
fp_max, fp_argmax = fp_mask_dt.reshape(B, -1).max(dim=-1)
is_positive = fn_max > fp_max
chosen = torch.where(is_positive, fn_argmax, fp_argmax)
points_x = chosen % W
points_y = chosen // W
labels = is_positive.long()
points = torch.stack([points_x, points_y], -1)
return points.unsqueeze(1), labels.unsqueeze(1)
def sample_one_point_from_error_center_slow(gt_masks, pred_masks, padding=True):
"""
Sample 1 random point (along with its label) from the center of each error region,
that is, the point with the largest distance to the boundary of each error region.
This is the RITM sampling method from https://github.com/saic-vul/ritm_interactive_segmentation/blob/master/isegm/inference/clicker.py
Inputs:
- gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool
- pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None
- padding: if True, pad with boundary of 1 px for distance transform
Outputs:
- points: [B, 1, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point
- labels: [B, 1], dtype=torch.int32, where 1 means positive clicks and 0 means negative clicks
"""
import cv2 # delay OpenCV import to avoid unnecessary dependency
if pred_masks is None:
pred_masks = torch.zeros_like(gt_masks)
assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1
assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape
B, _, _, W_im = gt_masks.shape
device = gt_masks.device
# false positive region, a new point sampled in this region should have
# negative label to correct the FP error
fp_masks = ~gt_masks & pred_masks
# false negative region, a new point sampled in this region should have
# positive label to correct the FN error
fn_masks = gt_masks & ~pred_masks
fp_masks = fp_masks.cpu().numpy()
fn_masks = fn_masks.cpu().numpy()
points = torch.zeros(B, 1, 2, dtype=torch.float)
labels = torch.ones(B, 1, dtype=torch.int32)
for b in range(B):
fn_mask = fn_masks[b, 0]
fp_mask = fp_masks[b, 0]
if padding:
fn_mask = np.pad(fn_mask, ((1, 1), (1, 1)), "constant")
fp_mask = np.pad(fp_mask, ((1, 1), (1, 1)), "constant")
# compute the distance of each point in FN/FP region to its boundary
fn_mask_dt = cv2.distanceTransform(fn_mask.astype(np.uint8), cv2.DIST_L2, 0)
fp_mask_dt = cv2.distanceTransform(fp_mask.astype(np.uint8), cv2.DIST_L2, 0)
if padding:
fn_mask_dt = fn_mask_dt[1:-1, 1:-1]
fp_mask_dt = fp_mask_dt[1:-1, 1:-1]
# take the point in FN/FP region with the largest distance to its boundary
fn_mask_dt_flat = fn_mask_dt.reshape(-1)
fp_mask_dt_flat = fp_mask_dt.reshape(-1)
fn_argmax = np.argmax(fn_mask_dt_flat)
fp_argmax = np.argmax(fp_mask_dt_flat)
is_positive = fn_mask_dt_flat[fn_argmax] > fp_mask_dt_flat[fp_argmax]
pt_idx = fn_argmax if is_positive else fp_argmax
points[b, 0, 0] = pt_idx % W_im # x
points[b, 0, 1] = pt_idx // W_im # y
labels[b, 0] = int(is_positive)
points = points.to(device)
labels = labels.to(device)
return points, labels
def get_next_point(gt_masks, pred_masks, method):
if method == "uniform":
return sample_random_points_from_errors(gt_masks, pred_masks)
elif method == "center":
return sample_one_point_from_error_center(gt_masks, pred_masks)
else:
raise ValueError(f"unknown sampling method {method}")
def select_closest_cond_frames(
frame_idx, cond_frame_outputs, max_cond_frame_num, keep_first_cond_frame=False
):
"""
Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs`
that are temporally closest to the current frame at `frame_idx`. Here, we take
- a) the closest conditioning frame before `frame_idx` (if any);
- b) the closest conditioning frame after `frame_idx` (if any);
- c) any other temporally closest conditioning frames until reaching a total
of `max_cond_frame_num` conditioning frames.
Outputs:
- selected_outputs: selected items (keys & values) from `cond_frame_outputs`.
- unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`.
"""
if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num:
selected_outputs = cond_frame_outputs
unselected_outputs = {}
else:
assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames"
selected_outputs = {}
if keep_first_cond_frame:
idx_first = min(
(t for t in cond_frame_outputs if t < frame_idx), default=None
)
if idx_first is None:
# Maybe we are tracking in reverse
idx_first = max(
(t for t in cond_frame_outputs if t > frame_idx), default=None
)
if idx_first is not None:
selected_outputs[idx_first] = cond_frame_outputs[idx_first]
# the closest conditioning frame before `frame_idx` (if any)
idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None)
if idx_before is not None:
selected_outputs[idx_before] = cond_frame_outputs[idx_before]
# the closest conditioning frame after `frame_idx` (if any)
idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None)
if idx_after is not None:
selected_outputs[idx_after] = cond_frame_outputs[idx_after]
# add other temporally closest conditioning frames until reaching a total
# of `max_cond_frame_num` conditioning frames.
num_remain = max_cond_frame_num - len(selected_outputs)
inds_remain = sorted(
(t for t in cond_frame_outputs if t not in selected_outputs),
key=lambda x: abs(x - frame_idx),
)[:num_remain]
selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain)
unselected_outputs = {
t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs
}
return selected_outputs, unselected_outputs
def get_1d_sine_pe(pos_inds, dim, temperature=10000):
"""
Get 1D sine positional embedding as in the original Transformer paper.
"""
pe_dim = dim // 2
dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device)
dim_t = temperature ** (2 * (dim_t // 2) / pe_dim)
pos_embed = pos_inds.unsqueeze(-1) / dim_t
pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1)
return pos_embed
def get_best_gt_match_from_multimasks(pred_multimasks, gt_masks, pred_scores=None):
"""
Get the mask with the best match to GT masks (based on IoU) from pred_multimasks.
Optionally, use `pred_scores` to break ties in case all IoUs are zeros.
"""
assert pred_multimasks.ndim == 4 and gt_masks.ndim == 4
if pred_multimasks.size(1) == 1:
return pred_multimasks # only a single mask channel, nothing to select
pred_multimasks_binary = pred_multimasks > 0
area_i = torch.sum(pred_multimasks_binary & gt_masks, dim=(2, 3)).float()
area_u = torch.sum(pred_multimasks_binary | gt_masks, dim=(2, 3)).float()
ious = area_i / torch.clamp(area_u, min=1.0)
# In case all IoUs are zeros (e.g. because the GT mask is empty), use pred_scores
# to break ties and select the best mask
if pred_scores is not None:
has_nonzero_ious = torch.any(ious > 0).expand_as(ious)
scores = torch.where(has_nonzero_ious, ious, pred_scores)
else:
scores = ious
# Finally, take the best mask prediction (with the highest score)
best_scores_inds = torch.argmax(scores, dim=-1)
batch_inds = torch.arange(scores.size(0), device=scores.device)
best_pred_mask = pred_multimasks[batch_inds, best_scores_inds].unsqueeze(1)
return best_pred_mask
def fill_holes_in_mask_scores(mask, max_area, fill_holes=True, remove_sprinkles=True):
"""
A post processor to fill small holes in mask scores with area under `max_area`.
Holes are those small connected components in either background or foreground.
Note that it relies on the "cc_torch" package to find connected components fast. You can
install it via the following command (`TORCH_CUDA_ARCH_LIST=8.0` is for A100 GPUs):
```
pip uninstall -y cc_torch; TORCH_CUDA_ARCH_LIST=8.0 9.0 pip install git+https://github.com/ronghanghu/cc_torch
```
Otherwise, it will fallback to a slightly slower triton implementation, or skimage if the tensor is on cpu
"""
if max_area <= 0:
return mask # nothing to fill in this case
if fill_holes:
# We remove small connected components in background by changing them to foreground
# with a small positive mask score (0.1).
mask_bg = mask <= 0
bg_area_thresh = max_area
_, areas_bg = _get_connected_components_with_padding(mask_bg)
small_components_bg = mask_bg & (areas_bg <= bg_area_thresh)
mask = torch.where(small_components_bg, 0.1, mask)
if remove_sprinkles:
# We remove small connected components in foreground by changing them to background
# with a small negative mask score (-0.1). Here we only remove connected components
# whose areas are under both `max_area` and half of the entire mask's area. This
# removes sprinkles while avoids filtering out tiny objects that we want to track.
mask_fg = mask > 0
fg_area_thresh = torch.sum(mask_fg, dim=(2, 3), keepdim=True, dtype=torch.int32)
fg_area_thresh.floor_divide_(2).clamp_(max=max_area)
_, areas_fg = _get_connected_components_with_padding(mask_fg)
small_components_fg = mask_fg & (areas_fg <= fg_area_thresh)
mask = torch.where(small_components_fg, -0.1, mask)
return mask
def _get_connected_components_with_padding(mask):
"""Get connected components from masks (possibly padding them to an even size)."""
from sam3.perflib.connected_components import connected_components
mask = mask.to(torch.uint8)
_, _, H, W = mask.shape
# make sure both height and width are even (to be compatible with cc_torch)
pad_h = H % 2
pad_w = W % 2
if pad_h == 0 and pad_w == 0:
labels, counts = connected_components(mask)
else:
# pad the mask to make its height and width even
# padding format is (padding_left,padding_right,padding_top,padding_bottom)
mask_pad = F.pad(mask, (0, pad_w, 0, pad_h), mode="constant", value=0)
labels, counts = connected_components(mask_pad)
labels = labels[:, :, :H, :W]
counts = counts[:, :, :H, :W]
return labels, counts
|