File size: 18,594 Bytes
14114e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved

import numpy as np
import torch
import torch.nn.functional as F
from numpy.typing import NDArray

from sam3.model.edt import edt_triton


def sample_box_points(
    masks: torch.Tensor,
    noise: float = 0.1,  # SAM default
    noise_bound: int = 20,  # SAM default
    top_left_label: int = 2,
    bottom_right_label: int = 3,
) -> tuple[NDArray, NDArray]:
    """
    Sample a noised version of the top left and bottom right corners of a given `bbox`

    Inputs:
    - masks: [B, 1, H, W] tensor
    - noise: noise as a fraction of box width and height, dtype=float
    - noise_bound: maximum amount of noise (in pure pixels), dtype=int

    Returns:
    - box_coords: [B, num_pt, 2], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.float
    - box_labels: [B, num_pt], label 2 is reserverd for top left and 3 for bottom right corners, dtype=torch.int32
    """
    device = masks.device
    box_coords = mask_to_box(masks)
    B, _, H, W = masks.shape
    box_labels = torch.tensor(
        [top_left_label, bottom_right_label], dtype=torch.int, device=device
    ).repeat(B)
    if noise > 0.0:
        if not isinstance(noise_bound, torch.Tensor):
            noise_bound = torch.tensor(noise_bound, device=device)
        bbox_w = box_coords[..., 2] - box_coords[..., 0]
        bbox_h = box_coords[..., 3] - box_coords[..., 1]
        max_dx = torch.min(bbox_w * noise, noise_bound)
        max_dy = torch.min(bbox_h * noise, noise_bound)
        box_noise = 2 * torch.rand(B, 1, 4, device=device) - 1
        box_noise = box_noise * torch.stack((max_dx, max_dy, max_dx, max_dy), dim=-1)

        box_coords = box_coords + box_noise
        img_bounds = (
            torch.tensor([W, H, W, H], device=device) - 1
        )  # uncentered pixel coords
        box_coords.clamp_(torch.zeros_like(img_bounds), img_bounds)  # In place clamping

    box_coords = box_coords.reshape(-1, 2, 2)  # always 2 points
    box_labels = box_labels.reshape(-1, 2)
    return box_coords, box_labels


def mask_to_box(masks: torch.Tensor):
    """
    compute bounding box given an input mask

    Inputs:
    - masks: [B, 1, H, W] tensor

    Returns:
    - box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor
    """
    B, _, h, w = masks.shape
    device = masks.device
    mask_area = masks.sum(dim=(-1, -2))
    xs = torch.arange(w, device=device, dtype=torch.int32)
    ys = torch.arange(h, device=device, dtype=torch.int32)
    grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy")
    grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w)
    grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w)
    min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1)
    max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1)
    min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1)
    max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1)
    bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1)
    bbox_coords = torch.where(
        mask_area[..., None] > 0, bbox_coords, torch.zeros_like(bbox_coords)
    )
    return bbox_coords


def sample_random_points_from_errors(gt_masks, pred_masks, num_pt=1):
    """
    Sample `num_pt` random points (along with their labels) independently from the error regions.

    Inputs:
    - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool
    - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None
    - num_pt: int, number of points to sample independently for each of the B error maps

    Outputs:
    - points: [B, num_pt, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point
    - labels: [B, num_pt], dtype=torch.int32, where 1 means positive clicks and 0 means
      negative clicks
    """
    if pred_masks is None:  # if pred_masks is not provided, treat it as empty
        pred_masks = torch.zeros_like(gt_masks)
    assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1
    assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape
    assert num_pt >= 0

    B, _, H_im, W_im = gt_masks.shape
    device = gt_masks.device

    # false positive region, a new point sampled in this region should have
    # negative label to correct the FP error
    fp_masks = ~gt_masks & pred_masks
    # false negative region, a new point sampled in this region should have
    # positive label to correct the FN error
    fn_masks = gt_masks & ~pred_masks
    # whether the prediction completely match the ground-truth on each mask
    all_correct = torch.all((gt_masks == pred_masks).flatten(2), dim=2)
    all_correct = all_correct[..., None, None]

    # channel 0 is FP map, while channel 1 is FN map
    pts_noise = torch.rand(B, num_pt, H_im, W_im, 2, device=device)
    # sample a negative new click from FP region or a positive new click
    # from FN region, depend on where the maximum falls,
    # and in case the predictions are all correct (no FP or FN), we just
    # sample a negative click from the background region
    pts_noise[..., 0] *= fp_masks | (all_correct & ~gt_masks)
    pts_noise[..., 1] *= fn_masks
    pts_idx = pts_noise.flatten(2).argmax(dim=2)
    labels = (pts_idx % 2).to(torch.int32)
    pts_idx = pts_idx // 2
    pts_x = pts_idx % W_im
    pts_y = pts_idx // W_im
    points = torch.stack([pts_x, pts_y], dim=2).to(torch.float)
    return points, labels


def sample_one_point_from_error_center(gt_masks, pred_masks, padding=True):
    """
    Sample 1 random point (along with its label) from the center of each error region,
    that is, the point with the largest distance to the boundary of each error region.
    This is the RITM sampling method from https://github.com/saic-vul/ritm_interactive_segmentation/blob/master/isegm/inference/clicker.py

    Inputs:
    - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool
    - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None
    - padding: if True, pad with boundary of 1 px for distance transform

    Outputs:
    - points: [B, 1, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point
    - labels: [B, 1], dtype=torch.int32, where 1 means positive clicks and 0 means negative clicks
    """
    if pred_masks is None:
        pred_masks = torch.zeros_like(gt_masks)
    assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1
    assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape

    B, _, H, W = gt_masks.shape

    # false positive region, a new point sampled in this region should have
    # negative label to correct the FP error
    fp_masks = (~gt_masks & pred_masks).squeeze(1)
    # false negative region, a new point sampled in this region should have
    # positive label to correct the FN error
    fn_masks = (gt_masks & ~pred_masks).squeeze(1)

    if padding:
        padded_fp_masks = torch.zeros(
            B, H + 2, W + 2, dtype=fp_masks.dtype, device=fp_masks.device
        )
        padded_fp_masks[:, 1 : H + 1, 1 : W + 1] = fp_masks
        padded_fn_masks = torch.zeros(
            B, H + 2, W + 2, dtype=fp_masks.dtype, device=fp_masks.device
        )
        padded_fn_masks[:, 1 : H + 1, 1 : W + 1] = fn_masks
    else:
        padded_fp_masks = fp_masks
        padded_fn_masks = fn_masks

    fn_mask_dt = edt_triton(padded_fn_masks)
    fp_mask_dt = edt_triton(padded_fp_masks)
    if padding:
        fn_mask_dt = fn_mask_dt[:, 1:-1, 1:-1]
        fp_mask_dt = fp_mask_dt[:, 1:-1, 1:-1]

    fn_max, fn_argmax = fn_mask_dt.reshape(B, -1).max(dim=-1)
    fp_max, fp_argmax = fp_mask_dt.reshape(B, -1).max(dim=-1)
    is_positive = fn_max > fp_max
    chosen = torch.where(is_positive, fn_argmax, fp_argmax)
    points_x = chosen % W
    points_y = chosen // W

    labels = is_positive.long()
    points = torch.stack([points_x, points_y], -1)
    return points.unsqueeze(1), labels.unsqueeze(1)


def sample_one_point_from_error_center_slow(gt_masks, pred_masks, padding=True):
    """
    Sample 1 random point (along with its label) from the center of each error region,
    that is, the point with the largest distance to the boundary of each error region.
    This is the RITM sampling method from https://github.com/saic-vul/ritm_interactive_segmentation/blob/master/isegm/inference/clicker.py

    Inputs:
    - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool
    - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None
    - padding: if True, pad with boundary of 1 px for distance transform

    Outputs:
    - points: [B, 1, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point
    - labels: [B, 1], dtype=torch.int32, where 1 means positive clicks and 0 means negative clicks
    """
    import cv2  # delay OpenCV import to avoid unnecessary dependency

    if pred_masks is None:
        pred_masks = torch.zeros_like(gt_masks)
    assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1
    assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape

    B, _, _, W_im = gt_masks.shape
    device = gt_masks.device

    # false positive region, a new point sampled in this region should have
    # negative label to correct the FP error
    fp_masks = ~gt_masks & pred_masks
    # false negative region, a new point sampled in this region should have
    # positive label to correct the FN error
    fn_masks = gt_masks & ~pred_masks

    fp_masks = fp_masks.cpu().numpy()
    fn_masks = fn_masks.cpu().numpy()
    points = torch.zeros(B, 1, 2, dtype=torch.float)
    labels = torch.ones(B, 1, dtype=torch.int32)
    for b in range(B):
        fn_mask = fn_masks[b, 0]
        fp_mask = fp_masks[b, 0]
        if padding:
            fn_mask = np.pad(fn_mask, ((1, 1), (1, 1)), "constant")
            fp_mask = np.pad(fp_mask, ((1, 1), (1, 1)), "constant")
        # compute the distance of each point in FN/FP region to its boundary
        fn_mask_dt = cv2.distanceTransform(fn_mask.astype(np.uint8), cv2.DIST_L2, 0)
        fp_mask_dt = cv2.distanceTransform(fp_mask.astype(np.uint8), cv2.DIST_L2, 0)
        if padding:
            fn_mask_dt = fn_mask_dt[1:-1, 1:-1]
            fp_mask_dt = fp_mask_dt[1:-1, 1:-1]

        # take the point in FN/FP region with the largest distance to its boundary
        fn_mask_dt_flat = fn_mask_dt.reshape(-1)
        fp_mask_dt_flat = fp_mask_dt.reshape(-1)
        fn_argmax = np.argmax(fn_mask_dt_flat)
        fp_argmax = np.argmax(fp_mask_dt_flat)
        is_positive = fn_mask_dt_flat[fn_argmax] > fp_mask_dt_flat[fp_argmax]
        pt_idx = fn_argmax if is_positive else fp_argmax
        points[b, 0, 0] = pt_idx % W_im  # x
        points[b, 0, 1] = pt_idx // W_im  # y
        labels[b, 0] = int(is_positive)

    points = points.to(device)
    labels = labels.to(device)
    return points, labels


def get_next_point(gt_masks, pred_masks, method):
    if method == "uniform":
        return sample_random_points_from_errors(gt_masks, pred_masks)
    elif method == "center":
        return sample_one_point_from_error_center(gt_masks, pred_masks)
    else:
        raise ValueError(f"unknown sampling method {method}")


def select_closest_cond_frames(
    frame_idx, cond_frame_outputs, max_cond_frame_num, keep_first_cond_frame=False
):
    """
    Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs`
    that are temporally closest to the current frame at `frame_idx`. Here, we take
    - a) the closest conditioning frame before `frame_idx` (if any);
    - b) the closest conditioning frame after `frame_idx` (if any);
    - c) any other temporally closest conditioning frames until reaching a total
         of `max_cond_frame_num` conditioning frames.

    Outputs:
    - selected_outputs: selected items (keys & values) from `cond_frame_outputs`.
    - unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`.
    """
    if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num:
        selected_outputs = cond_frame_outputs
        unselected_outputs = {}
    else:
        assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames"
        selected_outputs = {}
        if keep_first_cond_frame:
            idx_first = min(
                (t for t in cond_frame_outputs if t < frame_idx), default=None
            )
            if idx_first is None:
                # Maybe we are tracking in reverse
                idx_first = max(
                    (t for t in cond_frame_outputs if t > frame_idx), default=None
                )
            if idx_first is not None:
                selected_outputs[idx_first] = cond_frame_outputs[idx_first]
        # the closest conditioning frame before `frame_idx` (if any)
        idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None)
        if idx_before is not None:
            selected_outputs[idx_before] = cond_frame_outputs[idx_before]

        # the closest conditioning frame after `frame_idx` (if any)
        idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None)
        if idx_after is not None:
            selected_outputs[idx_after] = cond_frame_outputs[idx_after]

        # add other temporally closest conditioning frames until reaching a total
        # of `max_cond_frame_num` conditioning frames.
        num_remain = max_cond_frame_num - len(selected_outputs)
        inds_remain = sorted(
            (t for t in cond_frame_outputs if t not in selected_outputs),
            key=lambda x: abs(x - frame_idx),
        )[:num_remain]
        selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain)
        unselected_outputs = {
            t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs
        }

    return selected_outputs, unselected_outputs


def get_1d_sine_pe(pos_inds, dim, temperature=10000):
    """
    Get 1D sine positional embedding as in the original Transformer paper.
    """
    pe_dim = dim // 2
    dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device)
    dim_t = temperature ** (2 * (dim_t // 2) / pe_dim)

    pos_embed = pos_inds.unsqueeze(-1) / dim_t
    pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1)
    return pos_embed


def get_best_gt_match_from_multimasks(pred_multimasks, gt_masks, pred_scores=None):
    """
    Get the mask with the best match to GT masks (based on IoU) from pred_multimasks.
    Optionally, use `pred_scores` to break ties in case all IoUs are zeros.
    """
    assert pred_multimasks.ndim == 4 and gt_masks.ndim == 4
    if pred_multimasks.size(1) == 1:
        return pred_multimasks  # only a single mask channel, nothing to select

    pred_multimasks_binary = pred_multimasks > 0
    area_i = torch.sum(pred_multimasks_binary & gt_masks, dim=(2, 3)).float()
    area_u = torch.sum(pred_multimasks_binary | gt_masks, dim=(2, 3)).float()
    ious = area_i / torch.clamp(area_u, min=1.0)

    # In case all IoUs are zeros (e.g. because the GT mask is empty), use pred_scores
    # to break ties and select the best mask
    if pred_scores is not None:
        has_nonzero_ious = torch.any(ious > 0).expand_as(ious)
        scores = torch.where(has_nonzero_ious, ious, pred_scores)
    else:
        scores = ious

    # Finally, take the best mask prediction (with the highest score)
    best_scores_inds = torch.argmax(scores, dim=-1)
    batch_inds = torch.arange(scores.size(0), device=scores.device)
    best_pred_mask = pred_multimasks[batch_inds, best_scores_inds].unsqueeze(1)
    return best_pred_mask


def fill_holes_in_mask_scores(mask, max_area, fill_holes=True, remove_sprinkles=True):
    """
    A post processor to fill small holes in mask scores with area under `max_area`.
    Holes are those small connected components in either background or foreground.

    Note that it relies on the "cc_torch" package to find connected components fast. You can
    install it via the following command (`TORCH_CUDA_ARCH_LIST=8.0` is for A100 GPUs):
    ```
    pip uninstall -y cc_torch; TORCH_CUDA_ARCH_LIST=8.0 9.0 pip install git+https://github.com/ronghanghu/cc_torch
    ```
    Otherwise, it will fallback to a slightly slower triton implementation, or skimage if the tensor is on cpu
    """

    if max_area <= 0:
        return mask  # nothing to fill in this case

    if fill_holes:
        # We remove small connected components in background by changing them to foreground
        # with a small positive mask score (0.1).
        mask_bg = mask <= 0
        bg_area_thresh = max_area
        _, areas_bg = _get_connected_components_with_padding(mask_bg)
        small_components_bg = mask_bg & (areas_bg <= bg_area_thresh)
        mask = torch.where(small_components_bg, 0.1, mask)

    if remove_sprinkles:
        # We remove small connected components in foreground by changing them to background
        # with a small negative mask score (-0.1). Here we only remove connected components
        # whose areas are under both `max_area` and half of the entire mask's area. This
        # removes sprinkles while avoids filtering out tiny objects that we want to track.
        mask_fg = mask > 0
        fg_area_thresh = torch.sum(mask_fg, dim=(2, 3), keepdim=True, dtype=torch.int32)
        fg_area_thresh.floor_divide_(2).clamp_(max=max_area)
        _, areas_fg = _get_connected_components_with_padding(mask_fg)
        small_components_fg = mask_fg & (areas_fg <= fg_area_thresh)
        mask = torch.where(small_components_fg, -0.1, mask)
    return mask


def _get_connected_components_with_padding(mask):
    """Get connected components from masks (possibly padding them to an even size)."""
    from sam3.perflib.connected_components import connected_components

    mask = mask.to(torch.uint8)
    _, _, H, W = mask.shape
    # make sure both height and width are even (to be compatible with cc_torch)
    pad_h = H % 2
    pad_w = W % 2
    if pad_h == 0 and pad_w == 0:
        labels, counts = connected_components(mask)
    else:
        # pad the mask to make its height and width even
        # padding format is (padding_left,padding_right,padding_top,padding_bottom)
        mask_pad = F.pad(mask, (0, pad_w, 0, pad_h), mode="constant", value=0)
        labels, counts = connected_components(mask_pad)
        labels = labels[:, :, :H, :W]
        counts = counts[:, :, :H, :W]

    return labels, counts