File size: 59,431 Bytes
14114e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved

import logging

import torch
import torch.nn.functional as F

from sam3.model.memory import SimpleMaskEncoder

from sam3.model.sam3_tracker_utils import get_1d_sine_pe, select_closest_cond_frames

from sam3.sam.mask_decoder import MaskDecoder, MLP
from sam3.sam.prompt_encoder import PromptEncoder
from sam3.sam.transformer import TwoWayTransformer
from sam3.train.data.collator import BatchedDatapoint

try:
    from timm.layers import trunc_normal_
except ModuleNotFoundError:
    # compatibility for older timm versions
    from timm.models.layers import trunc_normal_

# a large negative value as a placeholder score for missing objects
NO_OBJ_SCORE = -1024.0


class Sam3TrackerBase(torch.nn.Module):
    def __init__(
        self,
        backbone,
        transformer,
        maskmem_backbone,
        num_maskmem=7,  # default 1 input frame + 6 previous frames as in CAE
        image_size=1008,
        backbone_stride=14,  # stride of the image backbone output
        # The maximum number of conditioning frames to participate in the memory attention (-1 means no limit; if there are more conditioning frames than this limit,
        # we only cross-attend to the temporally closest `max_cond_frames_in_attn` conditioning frames in the encoder when tracking each frame). This gives the model
        # a temporal locality when handling a large number of annotated frames (since closer frames should be more important) and also avoids GPU OOM.
        max_cond_frames_in_attn=-1,
        # Whether to always keep the first conditioning frame in case we exceed the maximum number of conditioning frames allowed
        keep_first_cond_frame=False,
        # whether to output multiple (3) masks for the first click on initial conditioning frames
        multimask_output_in_sam=False,
        # the minimum and maximum number of clicks to use multimask_output_in_sam (only relevant when `multimask_output_in_sam=True`;
        # default is 1 for both, meaning that only the first click gives multimask output; also note that a box counts as two points)
        multimask_min_pt_num=1,
        multimask_max_pt_num=1,
        # whether to also use multimask output for tracking (not just for the first click on initial conditioning frames; only relevant when `multimask_output_in_sam=True`)
        multimask_output_for_tracking=False,
        # whether to forward image features per frame (as it's being tracked) during evaluation, instead of forwarding image features
        # of all frames at once. This avoids backbone OOM errors on very long videos in evaluation, but could be slightly slower.
        forward_backbone_per_frame_for_eval=False,
        # The memory bank's temporal stride during evaluation (i.e. the `r` parameter in XMem and Cutie; XMem and Cutie use r=5).
        # For r>1, the (self.num_maskmem - 1) non-conditioning memory frames consist of
        # (self.num_maskmem - 2) nearest frames from every r-th frames, plus the last frame.
        memory_temporal_stride_for_eval=1,
        # whether to offload outputs to CPU memory during evaluation, to avoid GPU OOM on very long videos or very large resolutions or too many objects
        # (it's recommended to use `forward_backbone_per_frame_for_eval=True` first before setting this option to True)
        offload_output_to_cpu_for_eval=False,
        # whether to trim the output of past non-conditioning frames (num_maskmem frames before the current frame) during evaluation
        # (this helps save GPU or CPU memory on very long videos for semi-supervised VOS eval, where only the first frame receives prompts)
        trim_past_non_cond_mem_for_eval=False,
        # whether to apply non-overlapping constraints on the object masks in the memory encoder during evaluation (to avoid/alleviate superposing masks)
        non_overlap_masks_for_mem_enc=False,
        # the maximum number of object pointers from other frames in encoder cross attention
        max_obj_ptrs_in_encoder=16,
        # extra arguments used to construct the SAM mask decoder; if not None, it should be a dict of kwargs to be passed into `MaskDecoder` class.
        sam_mask_decoder_extra_args=None,
        # whether to compile all the model compoents
        compile_all_components=False,
        # select the frame with object existence
        use_memory_selection=False,
        # when using memory selection, the threshold to determine if the frame is good
        mf_threshold=0.01,
    ):
        super().__init__()

        # Part 1: the image backbone
        self.backbone = backbone
        self.num_feature_levels = 3
        self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder
        # A conv layer to downsample the GT mask prompt to stride 4 (the same stride as
        # low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale,
        # so that it can be fed into the SAM mask decoder to generate a pointer.
        self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4)

        # Part 2: encoder-only transformer to fuse current frame's visual features
        # with memories from past frames
        assert transformer.decoder is None, "transformer should be encoder-only"
        self.transformer = transformer
        self.hidden_dim = transformer.d_model

        # Part 3: memory encoder for the previous frame's outputs
        self.maskmem_backbone = maskmem_backbone
        self.mem_dim = self.hidden_dim
        if hasattr(self.maskmem_backbone, "out_proj") and hasattr(
            self.maskmem_backbone.out_proj, "weight"
        ):
            # if there is compression of memories along channel dim
            self.mem_dim = self.maskmem_backbone.out_proj.weight.shape[0]
        self.num_maskmem = num_maskmem  # Number of memories accessible

        # Temporal encoding of the memories
        self.maskmem_tpos_enc = torch.nn.Parameter(
            torch.zeros(num_maskmem, 1, 1, self.mem_dim)
        )
        trunc_normal_(self.maskmem_tpos_enc, std=0.02)

        # a single token to indicate no memory embedding from previous frames
        self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
        self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
        trunc_normal_(self.no_mem_embed, std=0.02)
        trunc_normal_(self.no_mem_pos_enc, std=0.02)
        # Apply sigmoid to the output raw mask logits (to turn them from
        # range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder
        self.sigmoid_scale_for_mem_enc = 20.0
        self.sigmoid_bias_for_mem_enc = -10.0
        self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc
        self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval
        # On frames with mask input, whether to directly output the input mask without
        # using a SAM prompt encoder + mask decoder
        self.multimask_output_in_sam = multimask_output_in_sam
        self.multimask_min_pt_num = multimask_min_pt_num
        self.multimask_max_pt_num = multimask_max_pt_num
        self.multimask_output_for_tracking = multimask_output_for_tracking

        # Part 4: SAM-style prompt encoder (for both mask and point inputs)
        # and SAM-style mask decoder for the final mask output
        self.image_size = image_size
        self.backbone_stride = backbone_stride
        self.low_res_mask_size = self.image_size // self.backbone_stride * 4
        # we resize the mask if it doesn't match `self.input_mask_size` (which is always 4x
        # the low-res mask size, regardless of the actual input image size); this is because
        # `_use_mask_as_output` always downsamples the input masks by 4x
        self.input_mask_size = self.low_res_mask_size * 4
        self.forward_backbone_per_frame_for_eval = forward_backbone_per_frame_for_eval
        self.offload_output_to_cpu_for_eval = offload_output_to_cpu_for_eval
        self.trim_past_non_cond_mem_for_eval = trim_past_non_cond_mem_for_eval
        self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args
        self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim))
        trunc_normal_(self.no_obj_ptr, std=0.02)
        self.no_obj_embed_spatial = torch.nn.Parameter(torch.zeros(1, self.mem_dim))
        trunc_normal_(self.no_obj_embed_spatial, std=0.02)

        self._build_sam_heads()
        self.max_cond_frames_in_attn = max_cond_frames_in_attn
        self.keep_first_cond_frame = keep_first_cond_frame

        # Use frame filtering according to SAM2Long
        self.use_memory_selection = use_memory_selection
        self.mf_threshold = mf_threshold

        # Compile all components of the model
        self.compile_all_components = compile_all_components
        if self.compile_all_components:
            self._compile_all_components()

    @property
    def device(self):
        return next(self.parameters()).device

    def _get_tpos_enc(self, rel_pos_list, device, max_abs_pos=None, dummy=False):
        if dummy:
            return torch.zeros(len(rel_pos_list), self.mem_dim, device=device)

        t_diff_max = max_abs_pos - 1 if max_abs_pos is not None else 1
        pos_enc = (
            torch.tensor(rel_pos_list).pin_memory().to(device=device, non_blocking=True)
            / t_diff_max
        )
        tpos_dim = self.hidden_dim
        pos_enc = get_1d_sine_pe(pos_enc, dim=tpos_dim)
        pos_enc = self.obj_ptr_tpos_proj(pos_enc)

        return pos_enc

    def _build_sam_heads(self):
        """Build SAM-style prompt encoder and mask decoder."""
        self.sam_prompt_embed_dim = self.hidden_dim
        self.sam_image_embedding_size = self.image_size // self.backbone_stride

        # build PromptEncoder and MaskDecoder from SAM
        # (their hyperparameters like `mask_in_chans=16` are from SAM code)
        self.sam_prompt_encoder = PromptEncoder(
            embed_dim=self.sam_prompt_embed_dim,
            image_embedding_size=(
                self.sam_image_embedding_size,
                self.sam_image_embedding_size,
            ),
            input_image_size=(self.image_size, self.image_size),
            mask_in_chans=16,
        )
        self.sam_mask_decoder = MaskDecoder(
            num_multimask_outputs=3,
            transformer=TwoWayTransformer(
                depth=2,
                embedding_dim=self.sam_prompt_embed_dim,
                mlp_dim=2048,
                num_heads=8,
            ),
            transformer_dim=self.sam_prompt_embed_dim,
            iou_head_depth=3,
            iou_head_hidden_dim=256,
            use_high_res_features=True,
            iou_prediction_use_sigmoid=True,
            pred_obj_scores=True,
            pred_obj_scores_mlp=True,
            use_multimask_token_for_obj_ptr=True,
            **(self.sam_mask_decoder_extra_args or {}),
        )
        # a linear projection on SAM output tokens to turn them into object pointers
        self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim)
        self.obj_ptr_proj = MLP(self.hidden_dim, self.hidden_dim, self.hidden_dim, 3)
        # a linear projection on temporal positional encoding in object pointers to
        # avoid potential interference with spatial positional encoding
        self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim)

    def _forward_sam_heads(
        self,
        backbone_features,
        point_inputs=None,
        mask_inputs=None,
        high_res_features=None,
        multimask_output=False,
        gt_masks=None,
    ):
        """
        Forward SAM prompt encoders and mask heads.

        Inputs:
        - backbone_features: image features of [B, C, H, W] shape
        - point_inputs: a dictionary with "point_coords" and "point_labels", where
          1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the
             absolute pixel-unit coordinate in (x, y) format of the P input points
          2) "point_labels" has shape [B, P] and int32 dtype, where 1 means
             positive clicks, 0 means negative clicks, and -1 means padding
        - mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the
          same spatial size as the image.
        - high_res_features: either 1) None or 2) or a list of length 2 containing
          two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively,
          which will be used as high-resolution feature maps for SAM decoder.
        - multimask_output: if it's True, we output 3 candidate masks and their 3
          corresponding IoU estimates, and if it's False, we output only 1 mask and
          its corresponding IoU estimate.

        Outputs:
        - low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if
          `multimask_output=True` and M = 1 if `multimask_output=False`), the SAM
          output mask logits (before sigmoid) for the low-resolution masks, with 4x
          the resolution (1/4 stride) of the input backbone_features.
        - high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3
          if `multimask_output=True` and M = 1 if `multimask_output=False`),
          upsampled from the low-resolution masks, with shape size as the image
          (stride is 1 pixel).
        - ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1
          if `multimask_output=False`), the estimated IoU of each output mask.
        - low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`.
          If `multimask_output=True`, it's the mask with the highest IoU estimate.
          If `multimask_output=False`, it's the same as `low_res_multimasks`.
        - high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`.
          If `multimask_output=True`, it's the mask with the highest IoU estimate.
          If `multimask_output=False`, it's the same as `high_res_multimasks`.
        - obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted
          based on the output token from the SAM mask decoder.
        """
        B = backbone_features.size(0)
        device = backbone_features.device
        assert backbone_features.size(1) == self.sam_prompt_embed_dim
        assert backbone_features.size(2) == self.sam_image_embedding_size
        assert backbone_features.size(3) == self.sam_image_embedding_size

        # a) Handle point prompts
        if point_inputs is not None:
            sam_point_coords = point_inputs["point_coords"]
            sam_point_labels = point_inputs["point_labels"]
            assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
        else:
            # If no points are provide, pad with an empty point (with label -1)
            sam_point_coords = torch.zeros(B, 1, 2, device=device)
            sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)

        # b) Handle mask prompts
        if mask_inputs is not None:
            # If mask_inputs is provided, downsize it into low-res mask input if needed
            # and feed it as a dense mask prompt into the SAM mask encoder
            assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
            if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
                sam_mask_prompt = F.interpolate(
                    mask_inputs.float(),
                    size=self.sam_prompt_encoder.mask_input_size,
                    align_corners=False,
                    mode="bilinear",
                    antialias=True,  # use antialias for downsampling
                )
            else:
                sam_mask_prompt = mask_inputs
        else:
            # Otherwise, simply feed None (and SAM's prompt encoder will add
            # a learned `no_mask_embed` to indicate no mask input in this case).
            sam_mask_prompt = None

        sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
            points=(sam_point_coords, sam_point_labels),
            boxes=None,
            masks=sam_mask_prompt,
        )
        # Clone image_pe and the outputs of sam_prompt_encoder
        # to enable compilation
        sparse_embeddings = self._maybe_clone(sparse_embeddings)
        dense_embeddings = self._maybe_clone(dense_embeddings)
        image_pe = self._maybe_clone(self.sam_prompt_encoder.get_dense_pe())
        with torch.profiler.record_function("sam_mask_decoder"):
            (
                low_res_multimasks,
                ious,
                sam_output_tokens,
                object_score_logits,
            ) = self.sam_mask_decoder(
                image_embeddings=backbone_features,
                image_pe=image_pe,
                sparse_prompt_embeddings=sparse_embeddings,
                dense_prompt_embeddings=dense_embeddings,
                multimask_output=multimask_output,
                repeat_image=False,  # the image is already batched
                high_res_features=high_res_features,
            )
        # Clone the output of sam_mask_decoder
        # to enable compilation
        low_res_multimasks = self._maybe_clone(low_res_multimasks)
        ious = self._maybe_clone(ious)
        sam_output_tokens = self._maybe_clone(sam_output_tokens)
        object_score_logits = self._maybe_clone(object_score_logits)

        if self.training and self.teacher_force_obj_scores_for_mem:
            # we use gt to detect if there is an object or not to
            # select no obj ptr and use an empty mask for spatial memory
            is_obj_appearing = torch.any(gt_masks.float().flatten(1) > 0, dim=1)
            is_obj_appearing = is_obj_appearing[..., None]
        else:
            is_obj_appearing = object_score_logits > 0

        # Mask used for spatial memories is always a *hard* choice between obj and no obj,
        # consistent with the actual mask prediction
        low_res_multimasks = torch.where(
            is_obj_appearing[:, None, None],
            low_res_multimasks,
            NO_OBJ_SCORE,
        )

        # convert masks from possibly bfloat16 (or float16) to float32
        # (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
        low_res_multimasks = low_res_multimasks.float()
        high_res_multimasks = F.interpolate(
            low_res_multimasks,
            size=(self.image_size, self.image_size),
            mode="bilinear",
            align_corners=False,
        )

        sam_output_token = sam_output_tokens[:, 0]
        if multimask_output:
            # take the best mask prediction (with the highest IoU estimation)
            best_iou_inds = torch.argmax(ious, dim=-1)
            batch_inds = torch.arange(B, device=device)
            low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
            high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
            if sam_output_tokens.size(1) > 1:
                sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
        else:
            low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks

        # Extract object pointer from the SAM output token (with occlusion handling)
        obj_ptr = self.obj_ptr_proj(sam_output_token)
        lambda_is_obj_appearing = is_obj_appearing.float()

        obj_ptr = lambda_is_obj_appearing * obj_ptr
        obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr

        return (
            low_res_multimasks,
            high_res_multimasks,
            ious,
            low_res_masks,
            high_res_masks,
            obj_ptr,
            object_score_logits,
        )

    def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs):
        """
        Directly turn binary `mask_inputs` into a output mask logits without using SAM.
        (same input and output shapes as in _forward_sam_heads above).
        """
        # Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid).
        out_scale, out_bias = 20.0, -10.0  # sigmoid(-10.0)=4.5398e-05
        mask_inputs_float = mask_inputs.float()
        high_res_masks = mask_inputs_float * out_scale + out_bias
        low_res_masks = F.interpolate(
            high_res_masks,
            size=(
                high_res_masks.size(-2) // self.backbone_stride * 4,
                high_res_masks.size(-1) // self.backbone_stride * 4,
            ),
            align_corners=False,
            mode="bilinear",
            antialias=True,  # use antialias for downsampling
        )
        # a dummy IoU prediction of all 1's under mask input
        ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float()
        # produce an object pointer using the SAM decoder from the mask input
        _, _, _, _, _, obj_ptr, _ = self._forward_sam_heads(
            backbone_features=backbone_features,
            mask_inputs=self.mask_downsample(mask_inputs_float),
            high_res_features=high_res_features,
            gt_masks=mask_inputs,
        )
        # In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem;
        # Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying
        # on the object_scores from the SAM decoder.
        is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1)
        is_obj_appearing = is_obj_appearing[..., None]
        lambda_is_obj_appearing = is_obj_appearing.float()
        object_score_logits = out_scale * lambda_is_obj_appearing + out_bias
        obj_ptr = lambda_is_obj_appearing * obj_ptr
        obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr

        return (
            low_res_masks,
            high_res_masks,
            ious,
            low_res_masks,
            high_res_masks,
            obj_ptr,
            object_score_logits,
        )

    def forward(self, input: BatchedDatapoint, is_inference=False):
        raise NotImplementedError(
            "Please use the corresponding methods in SAM3VideoPredictor for inference."
            "See examples/sam3_dense_video_tracking.ipynb for an inference example."
        )

    def forward_image(self, img_batch):
        """Get the image feature on the input batch."""
        # This line is the only change from the parent class
        # to use the SAM3 backbone instead of the SAM2 backbone.
        backbone_out = self.backbone.forward_image(img_batch)["sam2_backbone_out"]
        # precompute projected level 0 and level 1 features in SAM decoder
        # to avoid running it again on every SAM click
        backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(
            backbone_out["backbone_fpn"][0]
        )
        backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(
            backbone_out["backbone_fpn"][1]
        )
        # Clone to help torch.compile
        for i in range(len(backbone_out["backbone_fpn"])):
            backbone_out["backbone_fpn"][i] = self._maybe_clone(
                backbone_out["backbone_fpn"][i]
            )
            backbone_out["vision_pos_enc"][i] = self._maybe_clone(
                backbone_out["vision_pos_enc"][i]
            )
        return backbone_out

    def _prepare_backbone_features(self, backbone_out):
        """Prepare and flatten visual features (same as in MDETR_API model)."""
        backbone_out = backbone_out.copy()
        assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"])
        assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels

        feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :]
        vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :]

        feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds]
        # flatten NxCxHxW to HWxNxC
        vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
        vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds]

        return backbone_out, vision_feats, vision_pos_embeds, feat_sizes

    def _prepare_backbone_features_per_frame(self, img_batch, img_ids):
        """Compute the image backbone features on the fly for the given img_ids."""
        # Only forward backbone on unique image ids to avoid repeatitive computation
        # (if `img_ids` has only one element, it's already unique so we skip this step).
        if img_ids.numel() > 1:
            unique_img_ids, inv_ids = torch.unique(img_ids, return_inverse=True)
        else:
            unique_img_ids, inv_ids = img_ids, None

        # Compute the image features on those unique image ids
        image = img_batch[unique_img_ids]
        backbone_out = self.forward_image(image)
        (
            _,
            vision_feats,
            vision_pos_embeds,
            feat_sizes,
        ) = self._prepare_backbone_features(backbone_out)
        # Inverse-map image features for `unique_img_ids` to the final image features
        # for the original input `img_ids`.
        if inv_ids is not None:
            image = image[inv_ids]
            vision_feats = [x[:, inv_ids] for x in vision_feats]
            vision_pos_embeds = [x[:, inv_ids] for x in vision_pos_embeds]

        return image, vision_feats, vision_pos_embeds, feat_sizes

    def cal_mem_score(self, object_score_logits, iou_score):
        object_score_norm = torch.where(
            object_score_logits > 0,
            object_score_logits.sigmoid() * 2 - 1,  ## rescale to [0, 1]
            torch.zeros_like(object_score_logits),
        )
        score_per_frame = (object_score_norm * iou_score).mean()
        return score_per_frame

    def frame_filter(self, output_dict, track_in_reverse, frame_idx, num_frames, r):
        if (frame_idx == 0 and not track_in_reverse) or (
            frame_idx == num_frames - 1 and track_in_reverse
        ):
            return []

        max_num = min(
            num_frames, self.max_obj_ptrs_in_encoder
        )  ## maximum number of pointer memory frames to consider

        if not track_in_reverse:
            start = frame_idx - 1
            end = 0
            step = -r
            must_include = frame_idx - 1
        else:
            start = frame_idx + 1
            end = num_frames
            step = r
            must_include = frame_idx + 1

        valid_indices = []
        for i in range(start, end, step):
            if (
                i not in output_dict["non_cond_frame_outputs"]
                or "eff_iou_score" not in output_dict["non_cond_frame_outputs"][i]
            ):
                continue

            score_per_frame = output_dict["non_cond_frame_outputs"][i]["eff_iou_score"]

            if score_per_frame > self.mf_threshold:  # threshold
                valid_indices.insert(0, i)

            if len(valid_indices) >= max_num - 1:
                break

        if must_include not in valid_indices:
            valid_indices.append(must_include)

        return valid_indices

    def _prepare_memory_conditioned_features(
        self,
        frame_idx,
        is_init_cond_frame,
        current_vision_feats,
        current_vision_pos_embeds,
        feat_sizes,
        output_dict,
        num_frames,
        track_in_reverse=False,  # tracking in reverse time order (for demo usage)
        use_prev_mem_frame=True,
    ):
        """Fuse the current frame's visual feature map with previous memory."""
        B = current_vision_feats[-1].size(1)  # batch size on this frame
        C = self.hidden_dim
        H, W = feat_sizes[-1]  # top-level (lowest-resolution) feature size
        device = current_vision_feats[-1].device
        # The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images.
        # In this case, we skip the fusion with any memory.
        if self.num_maskmem == 0:  # Disable memory and skip fusion
            pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
            return pix_feat

        num_obj_ptr_tokens = 0
        tpos_sign_mul = -1 if track_in_reverse else 1
        # Step 1: condition the visual features of the current frame on previous memories
        if not is_init_cond_frame and use_prev_mem_frame:
            # Retrieve the memories encoded with the maskmem backbone
            to_cat_prompt, to_cat_prompt_mask, to_cat_prompt_pos_embed = [], [], []
            # Add conditioning frames's output first (all cond frames have t_pos=0 for
            # when getting temporal positional embedding below)
            assert len(output_dict["cond_frame_outputs"]) > 0
            # Select a maximum number of temporally closest cond frames for cross attention
            cond_outputs = output_dict["cond_frame_outputs"]
            selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames(
                frame_idx,
                cond_outputs,
                self.max_cond_frames_in_attn,
                keep_first_cond_frame=self.keep_first_cond_frame,
            )
            t_pos_and_prevs = [
                ((frame_idx - t) * tpos_sign_mul, out, True)
                for t, out in selected_cond_outputs.items()
            ]
            # Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory
            # the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1
            # We also allow taking the memory frame non-consecutively (with r>1), in which case
            # we take (self.num_maskmem - 2) frames among every r-th frames plus the last frame.
            r = 1 if self.training else self.memory_temporal_stride_for_eval

            if self.use_memory_selection:
                valid_indices = self.frame_filter(
                    output_dict, track_in_reverse, frame_idx, num_frames, r
                )

            for t_pos in range(1, self.num_maskmem):
                t_rel = self.num_maskmem - t_pos  # how many frames before current frame
                if self.use_memory_selection:
                    if t_rel > len(valid_indices):
                        continue
                    prev_frame_idx = valid_indices[-t_rel]
                else:
                    if t_rel == 1:
                        # for t_rel == 1, we take the last frame (regardless of r)
                        if not track_in_reverse:
                            # the frame immediately before this frame (i.e. frame_idx - 1)
                            prev_frame_idx = frame_idx - t_rel
                        else:
                            # the frame immediately after this frame (i.e. frame_idx + 1)
                            prev_frame_idx = frame_idx + t_rel
                    else:
                        # for t_rel >= 2, we take the memory frame from every r-th frames
                        if not track_in_reverse:
                            # first find the nearest frame among every r-th frames before this frame
                            # for r=1, this would be (frame_idx - 2)
                            prev_frame_idx = ((frame_idx - 2) // r) * r
                            # then seek further among every r-th frames
                            prev_frame_idx = prev_frame_idx - (t_rel - 2) * r
                        else:
                            # first find the nearest frame among every r-th frames after this frame
                            # for r=1, this would be (frame_idx + 2)
                            prev_frame_idx = -(-(frame_idx + 2) // r) * r
                            # then seek further among every r-th frames
                            prev_frame_idx = prev_frame_idx + (t_rel - 2) * r

                out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None)
                if out is None:
                    # If an unselected conditioning frame is among the last (self.num_maskmem - 1)
                    # frames, we still attend to it as if it's a non-conditioning frame.
                    out = unselected_cond_outputs.get(prev_frame_idx, None)
                t_pos_and_prevs.append((t_pos, out, False))

            for t_pos, prev, is_selected_cond_frame in t_pos_and_prevs:
                if prev is None:
                    continue  # skip padding frames
                # "maskmem_features" might have been offloaded to CPU in demo use cases,
                # so we load it back to GPU (it's a no-op if it's already on GPU).
                feats = prev["maskmem_features"].cuda(non_blocking=True)
                seq_len = feats.shape[-2] * feats.shape[-1]
                to_cat_prompt.append(feats.flatten(2).permute(2, 0, 1))
                to_cat_prompt_mask.append(
                    torch.zeros(B, seq_len, device=device, dtype=bool)
                )
                # Spatial positional encoding (it might have been offloaded to CPU in eval)
                maskmem_enc = prev["maskmem_pos_enc"][-1].cuda()
                maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1)

                if (
                    is_selected_cond_frame
                    and getattr(self, "cond_frame_spatial_embedding", None) is not None
                ):
                    # add a spatial embedding for the conditioning frame
                    maskmem_enc = maskmem_enc + self.cond_frame_spatial_embedding

                # Temporal positional encoding
                t = t_pos if not is_selected_cond_frame else 0
                maskmem_enc = (
                    maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t - 1]
                )
                to_cat_prompt_pos_embed.append(maskmem_enc)

            # Construct the list of past object pointers
            # Optionally, select only a subset of spatial memory frames during trainining
            if (
                self.training
                and self.prob_to_dropout_spatial_mem > 0
                and self.rng.random() < self.prob_to_dropout_spatial_mem
            ):
                num_spatial_mem_keep = self.rng.integers(len(to_cat_prompt) + 1)
                keep = self.rng.choice(
                    range(len(to_cat_prompt)), num_spatial_mem_keep, replace=False
                ).tolist()
                to_cat_prompt = [to_cat_prompt[i] for i in keep]
                to_cat_prompt_mask = [to_cat_prompt_mask[i] for i in keep]
                to_cat_prompt_pos_embed = [to_cat_prompt_pos_embed[i] for i in keep]

            max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
            # First add those object pointers from selected conditioning frames
            # (optionally, only include object pointers in the past during evaluation)
            if not self.training:
                ptr_cond_outputs = {
                    t: out
                    for t, out in selected_cond_outputs.items()
                    if (t >= frame_idx if track_in_reverse else t <= frame_idx)
                }
            else:
                ptr_cond_outputs = selected_cond_outputs
            pos_and_ptrs = [
                # Temporal pos encoding contains how far away each pointer is from current frame
                (
                    (frame_idx - t) * tpos_sign_mul,
                    out["obj_ptr"],
                    True,  # is_selected_cond_frame
                )
                for t, out in ptr_cond_outputs.items()
            ]

            # Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame
            for t_diff in range(1, max_obj_ptrs_in_encoder):
                if not self.use_memory_selection:
                    t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff
                    if t < 0 or (num_frames is not None and t >= num_frames):
                        break
                else:
                    if -t_diff <= -len(valid_indices):
                        break
                    t = valid_indices[-t_diff]

                out = output_dict["non_cond_frame_outputs"].get(
                    t, unselected_cond_outputs.get(t, None)
                )
                if out is not None:
                    pos_and_ptrs.append((t_diff, out["obj_ptr"], False))

            # If we have at least one object pointer, add them to the across attention
            if len(pos_and_ptrs) > 0:
                pos_list, ptrs_list, is_selected_cond_frame_list = zip(*pos_and_ptrs)
                # stack object pointers along dim=0 into [ptr_seq_len, B, C] shape
                obj_ptrs = torch.stack(ptrs_list, dim=0)
                if getattr(self, "cond_frame_obj_ptr_embedding", None) is not None:
                    obj_ptrs = (
                        obj_ptrs
                        + self.cond_frame_obj_ptr_embedding
                        * torch.tensor(is_selected_cond_frame_list, device=device)[
                            ..., None, None
                        ].float()
                    )
                # a temporal positional embedding based on how far each object pointer is from
                # the current frame (sine embedding normalized by the max pointer num).
                obj_pos = self._get_tpos_enc(
                    pos_list,
                    max_abs_pos=max_obj_ptrs_in_encoder,
                    device=device,
                )
                # expand to batch size
                obj_pos = obj_pos.unsqueeze(1).expand(-1, B, -1)

                if self.mem_dim < C:
                    # split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C
                    obj_ptrs = obj_ptrs.reshape(-1, B, C // self.mem_dim, self.mem_dim)
                    obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1)
                    obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0)
                to_cat_prompt.append(obj_ptrs)
                to_cat_prompt_mask.append(None)  # "to_cat_prompt_mask" is not used
                to_cat_prompt_pos_embed.append(obj_pos)
                num_obj_ptr_tokens = obj_ptrs.shape[0]
            else:
                num_obj_ptr_tokens = 0
        else:
            # directly add no-mem embedding (instead of using the transformer encoder)
            pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed
            pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
            return pix_feat_with_mem

            # Use a dummy token on the first grame (to avoid emtpy memory input to tranformer encoder)
            to_cat_prompt = [self.no_mem_embed.expand(1, B, self.mem_dim)]
            to_cat_prompt_mask = [torch.zeros(B, 1, device=device, dtype=bool)]
            to_cat_prompt_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)]

        # Step 2: Concatenate the memories and forward through the transformer encoder
        prompt = torch.cat(to_cat_prompt, dim=0)
        prompt_mask = None  # For now, we always masks are zeros anyways
        prompt_pos_embed = torch.cat(to_cat_prompt_pos_embed, dim=0)
        encoder_out = self.transformer.encoder(
            src=current_vision_feats,
            src_key_padding_mask=[None],
            src_pos=current_vision_pos_embeds,
            prompt=prompt,
            prompt_pos=prompt_pos_embed,
            prompt_key_padding_mask=prompt_mask,
            feat_sizes=feat_sizes,
            num_obj_ptr_tokens=num_obj_ptr_tokens,
        )
        # reshape the output (HW)BC => BCHW
        pix_feat_with_mem = encoder_out["memory"].permute(1, 2, 0).view(B, C, H, W)
        return pix_feat_with_mem

    def _encode_new_memory(
        self,
        image,
        current_vision_feats,
        feat_sizes,
        pred_masks_high_res,
        object_score_logits,
        is_mask_from_pts,
        output_dict=None,
        is_init_cond_frame=False,
    ):
        """Encode the current image and its prediction into a memory feature."""
        B = current_vision_feats[-1].size(1)  # batch size on this frame
        C = self.hidden_dim
        H, W = feat_sizes[-1]  # top-level (lowest-resolution) feature size
        # top-level feature, (HW)BC => BCHW
        pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
        if self.non_overlap_masks_for_mem_enc and not self.training:
            # optionally, apply non-overlapping constraints to the masks (it's applied
            # in the batch dimension and should only be used during eval, where all
            # the objects come from the same video under batch size 1).
            pred_masks_high_res = self._apply_non_overlapping_constraints(
                pred_masks_high_res
            )
        # scale the raw mask logits with a temperature before applying sigmoid
        if is_mask_from_pts and not self.training:
            mask_for_mem = (pred_masks_high_res > 0).float()
        else:
            # apply sigmoid on the raw mask logits to turn them into range (0, 1)
            mask_for_mem = torch.sigmoid(pred_masks_high_res)
        # apply scale and bias terms to the sigmoid probabilities
        if self.sigmoid_scale_for_mem_enc != 1.0:
            mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
        if self.sigmoid_bias_for_mem_enc != 0.0:
            mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc

        if isinstance(self.maskmem_backbone, SimpleMaskEncoder):
            pix_feat = pix_feat.view_as(pix_feat)
            maskmem_out = self.maskmem_backbone(
                pix_feat, mask_for_mem, skip_mask_sigmoid=True
            )
        else:
            maskmem_out = self.maskmem_backbone(image, pix_feat, mask_for_mem)
        # Clone the feats and pos_enc to enable compilation
        maskmem_features = self._maybe_clone(maskmem_out["vision_features"])
        maskmem_pos_enc = [self._maybe_clone(m) for m in maskmem_out["vision_pos_enc"]]
        # add a no-object embedding to the spatial memory to indicate that the frame
        # is predicted to be occluded (i.e. no object is appearing in the frame)
        is_obj_appearing = (object_score_logits > 0).float()
        maskmem_features += (
            1 - is_obj_appearing[..., None, None]
        ) * self.no_obj_embed_spatial[..., None, None].expand(*maskmem_features.shape)

        return maskmem_features, maskmem_pos_enc

    def forward_tracking(self, backbone_out, input, return_dict=False):
        """Forward video tracking on each frame (and sample correction clicks)."""
        img_feats_already_computed = backbone_out["backbone_fpn"] is not None
        if img_feats_already_computed:
            # Prepare the backbone features
            # - vision_feats and vision_pos_embeds are in (HW)BC format
            (
                _,
                vision_feats,
                vision_pos_embeds,
                feat_sizes,
            ) = self._prepare_backbone_features(backbone_out)

        # Starting the stage loop
        num_frames = backbone_out["num_frames"]
        init_cond_frames = backbone_out["init_cond_frames"]
        frames_to_add_correction_pt = backbone_out["frames_to_add_correction_pt"]
        # first process all the initial conditioning frames to encode them as memory,
        # and then conditioning on them to track the remaining frames
        processing_order = init_cond_frames + backbone_out["frames_not_in_init_cond"]
        output_dict = {
            "cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
            "non_cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
        }
        for stage_id in processing_order:
            # Get the image features for the current frames
            img_ids = input.find_inputs[stage_id].img_ids
            if img_feats_already_computed:
                # Retrieve image features according to img_ids (if they are already computed).
                current_image = input.img_batch[img_ids]
                current_vision_feats = [x[:, img_ids] for x in vision_feats]
                current_vision_pos_embeds = [x[:, img_ids] for x in vision_pos_embeds]
            else:
                # Otherwise, compute the image features on the fly for the given img_ids
                # (this might be used for evaluation on long videos to avoid backbone OOM).
                (
                    current_image,
                    current_vision_feats,
                    current_vision_pos_embeds,
                    feat_sizes,
                ) = self._prepare_backbone_features_per_frame(input.img_batch, img_ids)
            # Get output masks based on this frame's prompts and previous memory
            current_out = self.track_step(
                frame_idx=stage_id,
                is_init_cond_frame=stage_id in init_cond_frames,
                current_vision_feats=current_vision_feats,
                current_vision_pos_embeds=current_vision_pos_embeds,
                feat_sizes=feat_sizes,
                image=current_image,
                point_inputs=backbone_out["point_inputs_per_frame"].get(stage_id, None),
                mask_inputs=backbone_out["mask_inputs_per_frame"].get(stage_id, None),
                gt_masks=backbone_out["gt_masks_per_frame"].get(stage_id, None),
                frames_to_add_correction_pt=frames_to_add_correction_pt,
                output_dict=output_dict,
                num_frames=num_frames,
            )
            # Append the output, depending on whether it's a conditioning frame
            add_output_as_cond_frame = stage_id in init_cond_frames or (
                self.add_all_frames_to_correct_as_cond
                and stage_id in frames_to_add_correction_pt
            )
            if add_output_as_cond_frame:
                output_dict["cond_frame_outputs"][stage_id] = current_out
            else:
                output_dict["non_cond_frame_outputs"][stage_id] = current_out

        if return_dict:
            return output_dict
        # turn `output_dict` into a list for loss function
        all_frame_outputs = {}
        all_frame_outputs.update(output_dict["cond_frame_outputs"])
        all_frame_outputs.update(output_dict["non_cond_frame_outputs"])
        all_frame_outputs = [all_frame_outputs[t] for t in range(num_frames)]
        # Make DDP happy with activation checkpointing by removing unused keys
        all_frame_outputs = [
            {k: v for k, v in d.items() if k != "obj_ptr"} for d in all_frame_outputs
        ]

        return all_frame_outputs

    def track_step(
        self,
        frame_idx,
        is_init_cond_frame,
        current_vision_feats,
        current_vision_pos_embeds,
        feat_sizes,
        image,
        point_inputs,
        mask_inputs,
        output_dict,
        num_frames,
        track_in_reverse=False,  # tracking in reverse time order (for demo usage)
        # Whether to run the memory encoder on the predicted masks. Sometimes we might want
        # to skip the memory encoder with `run_mem_encoder=False`. For example,
        # in demo we might call `track_step` multiple times for each user click,
        # and only encode the memory when the user finalizes their clicks. And in ablation
        # settings like SAM training on static images, we don't need the memory encoder.
        run_mem_encoder=True,
        # The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
        prev_sam_mask_logits=None,
        use_prev_mem_frame=True,
    ):
        current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs}
        # High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW
        if len(current_vision_feats) > 1:
            high_res_features = [
                x.permute(1, 2, 0).view(x.size(1), x.size(2), *s)
                for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1])
            ]
        else:
            high_res_features = None
        if mask_inputs is not None:
            # (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
            pix_feat = current_vision_feats[-1].permute(1, 2, 0)
            pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
            sam_outputs = self._use_mask_as_output(
                pix_feat, high_res_features, mask_inputs
            )
        else:
            # fused the visual feature with previous memory features in the memory bank
            pix_feat_with_mem = self._prepare_memory_conditioned_features(
                frame_idx=frame_idx,
                is_init_cond_frame=is_init_cond_frame,
                current_vision_feats=current_vision_feats[-1:],
                current_vision_pos_embeds=current_vision_pos_embeds[-1:],
                feat_sizes=feat_sizes[-1:],
                output_dict=output_dict,
                num_frames=num_frames,
                track_in_reverse=track_in_reverse,
                use_prev_mem_frame=use_prev_mem_frame,
            )
            # apply SAM-style segmentation head
            # here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder,
            # e.g. in demo where such logits come from earlier interaction instead of correction sampling
            # (in this case, the SAM mask decoder should have `self.iter_use_prev_mask_pred=True`, and
            # any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead)
            if prev_sam_mask_logits is not None:
                assert self.iter_use_prev_mask_pred
                assert point_inputs is not None and mask_inputs is None
                mask_inputs = prev_sam_mask_logits
            multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
            sam_outputs = self._forward_sam_heads(
                backbone_features=pix_feat_with_mem,
                point_inputs=point_inputs,
                mask_inputs=mask_inputs,
                high_res_features=high_res_features,
                multimask_output=multimask_output,
            )
        (
            _,
            high_res_multimasks,
            ious,
            low_res_masks,
            high_res_masks,
            obj_ptr,
            object_score_logits,
        ) = sam_outputs
        # Use the final prediction (after all correction steps for output and eval)
        current_out["pred_masks"] = low_res_masks
        current_out["pred_masks_high_res"] = high_res_masks
        current_out["obj_ptr"] = obj_ptr
        if self.use_memory_selection:
            current_out["object_score_logits"] = object_score_logits
            iou_score = ious.max(-1)[0]
            current_out["iou_score"] = iou_score
            current_out["eff_iou_score"] = self.cal_mem_score(
                object_score_logits, iou_score
            )
        if not self.training:
            # Only add this in inference (to avoid unused param in activation checkpointing;
            # it's mainly used in the demo to encode spatial memories w/ consolidated masks)
            current_out["object_score_logits"] = object_score_logits

        # Finally run the memory encoder on the predicted mask to encode
        # it into a new memory feature (that can be used in future frames)
        # (note that `self.num_maskmem == 0` is primarily used for reproducing SAM on
        # images, in which case we'll just skip memory encoder to save compute).
        if run_mem_encoder and self.num_maskmem > 0:
            high_res_masks_for_mem_enc = high_res_masks
            maskmem_features, maskmem_pos_enc = self._encode_new_memory(
                image=image,
                current_vision_feats=current_vision_feats,
                feat_sizes=feat_sizes,
                pred_masks_high_res=high_res_masks_for_mem_enc,
                object_score_logits=object_score_logits,
                is_mask_from_pts=(point_inputs is not None),
                output_dict=output_dict,
                is_init_cond_frame=is_init_cond_frame,
            )
            current_out["maskmem_features"] = maskmem_features
            current_out["maskmem_pos_enc"] = maskmem_pos_enc
        else:
            current_out["maskmem_features"] = None
            current_out["maskmem_pos_enc"] = None

        # Optionally, offload the outputs to CPU memory during evaluation to avoid
        # GPU OOM on very long videos or very large resolution or too many objects
        if self.offload_output_to_cpu_for_eval and not self.training:
            # Here we only keep those keys needed for evaluation to get a compact output
            trimmed_out = {
                "pred_masks": current_out["pred_masks"].cpu(),
                "pred_masks_high_res": current_out["pred_masks_high_res"].cpu(),
                # other items for evaluation (these are small tensors so we keep them on GPU)
                "obj_ptr": current_out["obj_ptr"],
                "object_score_logits": current_out["object_score_logits"],
            }
            if run_mem_encoder and self.num_maskmem > 0:
                trimmed_out["maskmem_features"] = maskmem_features.cpu()
                trimmed_out["maskmem_pos_enc"] = [x.cpu() for x in maskmem_pos_enc]
            if self.use_memory_selection:
                trimmed_out["iou_score"] = current_out["iou_score"].cpu()
                trimmed_out["eff_iou_score"] = current_out["eff_iou_score"].cpu()
            current_out = trimmed_out

        # Optionally, trim the output of past non-conditioning frame (r * num_maskmem frames
        # before the current frame) during evaluation. This is intended to save GPU or CPU
        # memory for semi-supervised VOS eval, where only the first frame receives prompts.
        def _trim_past_out(past_out, current_out):
            if past_out is None:
                return None
            return {
                "pred_masks": past_out["pred_masks"],
                "obj_ptr": past_out["obj_ptr"],
                "object_score_logits": past_out["object_score_logits"],
            }

        if self.trim_past_non_cond_mem_for_eval and not self.training:
            r = self.memory_temporal_stride_for_eval
            past_frame_idx = frame_idx - r * self.num_maskmem
            past_out = output_dict["non_cond_frame_outputs"].get(past_frame_idx, None)

            if past_out is not None:
                print(past_out.get("eff_iou_score", 0))
                if (
                    self.use_memory_selection
                    and past_out.get("eff_iou_score", 0) < self.mf_threshold
                ) or not self.use_memory_selection:
                    output_dict["non_cond_frame_outputs"][past_frame_idx] = (
                        _trim_past_out(past_out, current_out)
                    )

            if (
                self.use_memory_selection and not self.offload_output_to_cpu_for_eval
            ):  ## design for memory selection, trim too old frames to save memory
                far_old_frame_idx = frame_idx - 20 * self.max_obj_ptrs_in_encoder
                past_out = output_dict["non_cond_frame_outputs"].get(
                    far_old_frame_idx, None
                )
                if past_out is not None:
                    output_dict["non_cond_frame_outputs"][far_old_frame_idx] = (
                        _trim_past_out(past_out, current_out)
                    )

        return current_out

    def _use_multimask(self, is_init_cond_frame, point_inputs):
        """Whether to use multimask output in the SAM head."""
        num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1)
        multimask_output = (
            self.multimask_output_in_sam
            and (is_init_cond_frame or self.multimask_output_for_tracking)
            and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num)
        )
        return multimask_output

    def _apply_non_overlapping_constraints(self, pred_masks):
        """
        Apply non-overlapping constraints to the object scores in pred_masks. Here we
        keep only the highest scoring object at each spatial location in pred_masks.
        """
        batch_size = pred_masks.size(0)
        if batch_size == 1:
            return pred_masks

        device = pred_masks.device
        # "max_obj_inds": object index of the object with the highest score at each location
        max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True)
        # "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks`
        batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None]
        keep = max_obj_inds == batch_obj_inds
        # suppress overlapping regions' scores below -10.0 so that the foreground regions
        # don't overlap (here sigmoid(-10.0)=4.5398e-05)
        pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0))
        return pred_masks

    def _compile_all_components(self):
        """Compile all model components for faster inference."""
        # a larger cache size to hold varying number of shapes for torch.compile
        # see https://github.com/pytorch/pytorch/blob/v2.5.1/torch/_dynamo/config.py#L42-L49
        torch._dynamo.config.cache_size_limit = 64
        torch._dynamo.config.accumulated_cache_size_limit = 2048
        from sam3.perflib.compile import compile_wrapper

        logging.info("Compiling all components. First time may be very slow.")

        self.maskmem_backbone.forward = compile_wrapper(
            self.maskmem_backbone.forward,
            mode="max-autotune",
            fullgraph=True,
            dynamic=False,
        )
        self.transformer.encoder.forward = compile_wrapper(
            self.transformer.encoder.forward,
            mode="max-autotune",
            fullgraph=True,
            dynamic=True,  # Num. of memories varies
        )
        # We disable compilation of sam_prompt_encoder as it sometimes gives a large accuracy regression,
        # especially when sam_mask_prompt (previous mask logits) is not None
        # self.sam_prompt_encoder.forward = torch.compile(
        #     self.sam_prompt_encoder.forward,
        #     mode="max-autotune",
        #     fullgraph=True,
        #     dynamic=False,  # Accuracy regression on True
        # )
        self.sam_mask_decoder.forward = compile_wrapper(
            self.sam_mask_decoder.forward,
            mode="max-autotune",
            fullgraph=True,
            dynamic=False,  # Accuracy regression on True
        )

    def _maybe_clone(self, x):
        """Clone a tensor if and only if `self.compile_all_components` is True."""
        return x.clone() if self.compile_all_components else x


def concat_points(old_point_inputs, new_points, new_labels):
    """Add new points and labels to previous point inputs (add at the end)."""
    if old_point_inputs is None:
        points, labels = new_points, new_labels
    else:
        points = torch.cat([old_point_inputs["point_coords"], new_points], dim=1)
        labels = torch.cat([old_point_inputs["point_labels"], new_labels], dim=1)

    return {"point_coords": points, "point_labels": labels}