Spaces:
Runtime error
Runtime error
File size: 59,431 Bytes
14114e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 |
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
import logging
import torch
import torch.nn.functional as F
from sam3.model.memory import SimpleMaskEncoder
from sam3.model.sam3_tracker_utils import get_1d_sine_pe, select_closest_cond_frames
from sam3.sam.mask_decoder import MaskDecoder, MLP
from sam3.sam.prompt_encoder import PromptEncoder
from sam3.sam.transformer import TwoWayTransformer
from sam3.train.data.collator import BatchedDatapoint
try:
from timm.layers import trunc_normal_
except ModuleNotFoundError:
# compatibility for older timm versions
from timm.models.layers import trunc_normal_
# a large negative value as a placeholder score for missing objects
NO_OBJ_SCORE = -1024.0
class Sam3TrackerBase(torch.nn.Module):
def __init__(
self,
backbone,
transformer,
maskmem_backbone,
num_maskmem=7, # default 1 input frame + 6 previous frames as in CAE
image_size=1008,
backbone_stride=14, # stride of the image backbone output
# The maximum number of conditioning frames to participate in the memory attention (-1 means no limit; if there are more conditioning frames than this limit,
# we only cross-attend to the temporally closest `max_cond_frames_in_attn` conditioning frames in the encoder when tracking each frame). This gives the model
# a temporal locality when handling a large number of annotated frames (since closer frames should be more important) and also avoids GPU OOM.
max_cond_frames_in_attn=-1,
# Whether to always keep the first conditioning frame in case we exceed the maximum number of conditioning frames allowed
keep_first_cond_frame=False,
# whether to output multiple (3) masks for the first click on initial conditioning frames
multimask_output_in_sam=False,
# the minimum and maximum number of clicks to use multimask_output_in_sam (only relevant when `multimask_output_in_sam=True`;
# default is 1 for both, meaning that only the first click gives multimask output; also note that a box counts as two points)
multimask_min_pt_num=1,
multimask_max_pt_num=1,
# whether to also use multimask output for tracking (not just for the first click on initial conditioning frames; only relevant when `multimask_output_in_sam=True`)
multimask_output_for_tracking=False,
# whether to forward image features per frame (as it's being tracked) during evaluation, instead of forwarding image features
# of all frames at once. This avoids backbone OOM errors on very long videos in evaluation, but could be slightly slower.
forward_backbone_per_frame_for_eval=False,
# The memory bank's temporal stride during evaluation (i.e. the `r` parameter in XMem and Cutie; XMem and Cutie use r=5).
# For r>1, the (self.num_maskmem - 1) non-conditioning memory frames consist of
# (self.num_maskmem - 2) nearest frames from every r-th frames, plus the last frame.
memory_temporal_stride_for_eval=1,
# whether to offload outputs to CPU memory during evaluation, to avoid GPU OOM on very long videos or very large resolutions or too many objects
# (it's recommended to use `forward_backbone_per_frame_for_eval=True` first before setting this option to True)
offload_output_to_cpu_for_eval=False,
# whether to trim the output of past non-conditioning frames (num_maskmem frames before the current frame) during evaluation
# (this helps save GPU or CPU memory on very long videos for semi-supervised VOS eval, where only the first frame receives prompts)
trim_past_non_cond_mem_for_eval=False,
# whether to apply non-overlapping constraints on the object masks in the memory encoder during evaluation (to avoid/alleviate superposing masks)
non_overlap_masks_for_mem_enc=False,
# the maximum number of object pointers from other frames in encoder cross attention
max_obj_ptrs_in_encoder=16,
# extra arguments used to construct the SAM mask decoder; if not None, it should be a dict of kwargs to be passed into `MaskDecoder` class.
sam_mask_decoder_extra_args=None,
# whether to compile all the model compoents
compile_all_components=False,
# select the frame with object existence
use_memory_selection=False,
# when using memory selection, the threshold to determine if the frame is good
mf_threshold=0.01,
):
super().__init__()
# Part 1: the image backbone
self.backbone = backbone
self.num_feature_levels = 3
self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder
# A conv layer to downsample the GT mask prompt to stride 4 (the same stride as
# low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale,
# so that it can be fed into the SAM mask decoder to generate a pointer.
self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4)
# Part 2: encoder-only transformer to fuse current frame's visual features
# with memories from past frames
assert transformer.decoder is None, "transformer should be encoder-only"
self.transformer = transformer
self.hidden_dim = transformer.d_model
# Part 3: memory encoder for the previous frame's outputs
self.maskmem_backbone = maskmem_backbone
self.mem_dim = self.hidden_dim
if hasattr(self.maskmem_backbone, "out_proj") and hasattr(
self.maskmem_backbone.out_proj, "weight"
):
# if there is compression of memories along channel dim
self.mem_dim = self.maskmem_backbone.out_proj.weight.shape[0]
self.num_maskmem = num_maskmem # Number of memories accessible
# Temporal encoding of the memories
self.maskmem_tpos_enc = torch.nn.Parameter(
torch.zeros(num_maskmem, 1, 1, self.mem_dim)
)
trunc_normal_(self.maskmem_tpos_enc, std=0.02)
# a single token to indicate no memory embedding from previous frames
self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
trunc_normal_(self.no_mem_embed, std=0.02)
trunc_normal_(self.no_mem_pos_enc, std=0.02)
# Apply sigmoid to the output raw mask logits (to turn them from
# range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder
self.sigmoid_scale_for_mem_enc = 20.0
self.sigmoid_bias_for_mem_enc = -10.0
self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc
self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval
# On frames with mask input, whether to directly output the input mask without
# using a SAM prompt encoder + mask decoder
self.multimask_output_in_sam = multimask_output_in_sam
self.multimask_min_pt_num = multimask_min_pt_num
self.multimask_max_pt_num = multimask_max_pt_num
self.multimask_output_for_tracking = multimask_output_for_tracking
# Part 4: SAM-style prompt encoder (for both mask and point inputs)
# and SAM-style mask decoder for the final mask output
self.image_size = image_size
self.backbone_stride = backbone_stride
self.low_res_mask_size = self.image_size // self.backbone_stride * 4
# we resize the mask if it doesn't match `self.input_mask_size` (which is always 4x
# the low-res mask size, regardless of the actual input image size); this is because
# `_use_mask_as_output` always downsamples the input masks by 4x
self.input_mask_size = self.low_res_mask_size * 4
self.forward_backbone_per_frame_for_eval = forward_backbone_per_frame_for_eval
self.offload_output_to_cpu_for_eval = offload_output_to_cpu_for_eval
self.trim_past_non_cond_mem_for_eval = trim_past_non_cond_mem_for_eval
self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args
self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim))
trunc_normal_(self.no_obj_ptr, std=0.02)
self.no_obj_embed_spatial = torch.nn.Parameter(torch.zeros(1, self.mem_dim))
trunc_normal_(self.no_obj_embed_spatial, std=0.02)
self._build_sam_heads()
self.max_cond_frames_in_attn = max_cond_frames_in_attn
self.keep_first_cond_frame = keep_first_cond_frame
# Use frame filtering according to SAM2Long
self.use_memory_selection = use_memory_selection
self.mf_threshold = mf_threshold
# Compile all components of the model
self.compile_all_components = compile_all_components
if self.compile_all_components:
self._compile_all_components()
@property
def device(self):
return next(self.parameters()).device
def _get_tpos_enc(self, rel_pos_list, device, max_abs_pos=None, dummy=False):
if dummy:
return torch.zeros(len(rel_pos_list), self.mem_dim, device=device)
t_diff_max = max_abs_pos - 1 if max_abs_pos is not None else 1
pos_enc = (
torch.tensor(rel_pos_list).pin_memory().to(device=device, non_blocking=True)
/ t_diff_max
)
tpos_dim = self.hidden_dim
pos_enc = get_1d_sine_pe(pos_enc, dim=tpos_dim)
pos_enc = self.obj_ptr_tpos_proj(pos_enc)
return pos_enc
def _build_sam_heads(self):
"""Build SAM-style prompt encoder and mask decoder."""
self.sam_prompt_embed_dim = self.hidden_dim
self.sam_image_embedding_size = self.image_size // self.backbone_stride
# build PromptEncoder and MaskDecoder from SAM
# (their hyperparameters like `mask_in_chans=16` are from SAM code)
self.sam_prompt_encoder = PromptEncoder(
embed_dim=self.sam_prompt_embed_dim,
image_embedding_size=(
self.sam_image_embedding_size,
self.sam_image_embedding_size,
),
input_image_size=(self.image_size, self.image_size),
mask_in_chans=16,
)
self.sam_mask_decoder = MaskDecoder(
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=self.sam_prompt_embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=self.sam_prompt_embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
use_high_res_features=True,
iou_prediction_use_sigmoid=True,
pred_obj_scores=True,
pred_obj_scores_mlp=True,
use_multimask_token_for_obj_ptr=True,
**(self.sam_mask_decoder_extra_args or {}),
)
# a linear projection on SAM output tokens to turn them into object pointers
self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim)
self.obj_ptr_proj = MLP(self.hidden_dim, self.hidden_dim, self.hidden_dim, 3)
# a linear projection on temporal positional encoding in object pointers to
# avoid potential interference with spatial positional encoding
self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim)
def _forward_sam_heads(
self,
backbone_features,
point_inputs=None,
mask_inputs=None,
high_res_features=None,
multimask_output=False,
gt_masks=None,
):
"""
Forward SAM prompt encoders and mask heads.
Inputs:
- backbone_features: image features of [B, C, H, W] shape
- point_inputs: a dictionary with "point_coords" and "point_labels", where
1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the
absolute pixel-unit coordinate in (x, y) format of the P input points
2) "point_labels" has shape [B, P] and int32 dtype, where 1 means
positive clicks, 0 means negative clicks, and -1 means padding
- mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the
same spatial size as the image.
- high_res_features: either 1) None or 2) or a list of length 2 containing
two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively,
which will be used as high-resolution feature maps for SAM decoder.
- multimask_output: if it's True, we output 3 candidate masks and their 3
corresponding IoU estimates, and if it's False, we output only 1 mask and
its corresponding IoU estimate.
Outputs:
- low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if
`multimask_output=True` and M = 1 if `multimask_output=False`), the SAM
output mask logits (before sigmoid) for the low-resolution masks, with 4x
the resolution (1/4 stride) of the input backbone_features.
- high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3
if `multimask_output=True` and M = 1 if `multimask_output=False`),
upsampled from the low-resolution masks, with shape size as the image
(stride is 1 pixel).
- ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1
if `multimask_output=False`), the estimated IoU of each output mask.
- low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`.
If `multimask_output=True`, it's the mask with the highest IoU estimate.
If `multimask_output=False`, it's the same as `low_res_multimasks`.
- high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`.
If `multimask_output=True`, it's the mask with the highest IoU estimate.
If `multimask_output=False`, it's the same as `high_res_multimasks`.
- obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted
based on the output token from the SAM mask decoder.
"""
B = backbone_features.size(0)
device = backbone_features.device
assert backbone_features.size(1) == self.sam_prompt_embed_dim
assert backbone_features.size(2) == self.sam_image_embedding_size
assert backbone_features.size(3) == self.sam_image_embedding_size
# a) Handle point prompts
if point_inputs is not None:
sam_point_coords = point_inputs["point_coords"]
sam_point_labels = point_inputs["point_labels"]
assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
else:
# If no points are provide, pad with an empty point (with label -1)
sam_point_coords = torch.zeros(B, 1, 2, device=device)
sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)
# b) Handle mask prompts
if mask_inputs is not None:
# If mask_inputs is provided, downsize it into low-res mask input if needed
# and feed it as a dense mask prompt into the SAM mask encoder
assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
sam_mask_prompt = F.interpolate(
mask_inputs.float(),
size=self.sam_prompt_encoder.mask_input_size,
align_corners=False,
mode="bilinear",
antialias=True, # use antialias for downsampling
)
else:
sam_mask_prompt = mask_inputs
else:
# Otherwise, simply feed None (and SAM's prompt encoder will add
# a learned `no_mask_embed` to indicate no mask input in this case).
sam_mask_prompt = None
sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
points=(sam_point_coords, sam_point_labels),
boxes=None,
masks=sam_mask_prompt,
)
# Clone image_pe and the outputs of sam_prompt_encoder
# to enable compilation
sparse_embeddings = self._maybe_clone(sparse_embeddings)
dense_embeddings = self._maybe_clone(dense_embeddings)
image_pe = self._maybe_clone(self.sam_prompt_encoder.get_dense_pe())
with torch.profiler.record_function("sam_mask_decoder"):
(
low_res_multimasks,
ious,
sam_output_tokens,
object_score_logits,
) = self.sam_mask_decoder(
image_embeddings=backbone_features,
image_pe=image_pe,
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
repeat_image=False, # the image is already batched
high_res_features=high_res_features,
)
# Clone the output of sam_mask_decoder
# to enable compilation
low_res_multimasks = self._maybe_clone(low_res_multimasks)
ious = self._maybe_clone(ious)
sam_output_tokens = self._maybe_clone(sam_output_tokens)
object_score_logits = self._maybe_clone(object_score_logits)
if self.training and self.teacher_force_obj_scores_for_mem:
# we use gt to detect if there is an object or not to
# select no obj ptr and use an empty mask for spatial memory
is_obj_appearing = torch.any(gt_masks.float().flatten(1) > 0, dim=1)
is_obj_appearing = is_obj_appearing[..., None]
else:
is_obj_appearing = object_score_logits > 0
# Mask used for spatial memories is always a *hard* choice between obj and no obj,
# consistent with the actual mask prediction
low_res_multimasks = torch.where(
is_obj_appearing[:, None, None],
low_res_multimasks,
NO_OBJ_SCORE,
)
# convert masks from possibly bfloat16 (or float16) to float32
# (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
low_res_multimasks = low_res_multimasks.float()
high_res_multimasks = F.interpolate(
low_res_multimasks,
size=(self.image_size, self.image_size),
mode="bilinear",
align_corners=False,
)
sam_output_token = sam_output_tokens[:, 0]
if multimask_output:
# take the best mask prediction (with the highest IoU estimation)
best_iou_inds = torch.argmax(ious, dim=-1)
batch_inds = torch.arange(B, device=device)
low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
if sam_output_tokens.size(1) > 1:
sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
else:
low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks
# Extract object pointer from the SAM output token (with occlusion handling)
obj_ptr = self.obj_ptr_proj(sam_output_token)
lambda_is_obj_appearing = is_obj_appearing.float()
obj_ptr = lambda_is_obj_appearing * obj_ptr
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
return (
low_res_multimasks,
high_res_multimasks,
ious,
low_res_masks,
high_res_masks,
obj_ptr,
object_score_logits,
)
def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs):
"""
Directly turn binary `mask_inputs` into a output mask logits without using SAM.
(same input and output shapes as in _forward_sam_heads above).
"""
# Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid).
out_scale, out_bias = 20.0, -10.0 # sigmoid(-10.0)=4.5398e-05
mask_inputs_float = mask_inputs.float()
high_res_masks = mask_inputs_float * out_scale + out_bias
low_res_masks = F.interpolate(
high_res_masks,
size=(
high_res_masks.size(-2) // self.backbone_stride * 4,
high_res_masks.size(-1) // self.backbone_stride * 4,
),
align_corners=False,
mode="bilinear",
antialias=True, # use antialias for downsampling
)
# a dummy IoU prediction of all 1's under mask input
ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float()
# produce an object pointer using the SAM decoder from the mask input
_, _, _, _, _, obj_ptr, _ = self._forward_sam_heads(
backbone_features=backbone_features,
mask_inputs=self.mask_downsample(mask_inputs_float),
high_res_features=high_res_features,
gt_masks=mask_inputs,
)
# In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem;
# Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying
# on the object_scores from the SAM decoder.
is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1)
is_obj_appearing = is_obj_appearing[..., None]
lambda_is_obj_appearing = is_obj_appearing.float()
object_score_logits = out_scale * lambda_is_obj_appearing + out_bias
obj_ptr = lambda_is_obj_appearing * obj_ptr
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
return (
low_res_masks,
high_res_masks,
ious,
low_res_masks,
high_res_masks,
obj_ptr,
object_score_logits,
)
def forward(self, input: BatchedDatapoint, is_inference=False):
raise NotImplementedError(
"Please use the corresponding methods in SAM3VideoPredictor for inference."
"See examples/sam3_dense_video_tracking.ipynb for an inference example."
)
def forward_image(self, img_batch):
"""Get the image feature on the input batch."""
# This line is the only change from the parent class
# to use the SAM3 backbone instead of the SAM2 backbone.
backbone_out = self.backbone.forward_image(img_batch)["sam2_backbone_out"]
# precompute projected level 0 and level 1 features in SAM decoder
# to avoid running it again on every SAM click
backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(
backbone_out["backbone_fpn"][0]
)
backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(
backbone_out["backbone_fpn"][1]
)
# Clone to help torch.compile
for i in range(len(backbone_out["backbone_fpn"])):
backbone_out["backbone_fpn"][i] = self._maybe_clone(
backbone_out["backbone_fpn"][i]
)
backbone_out["vision_pos_enc"][i] = self._maybe_clone(
backbone_out["vision_pos_enc"][i]
)
return backbone_out
def _prepare_backbone_features(self, backbone_out):
"""Prepare and flatten visual features (same as in MDETR_API model)."""
backbone_out = backbone_out.copy()
assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"])
assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels
feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :]
vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :]
feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds]
# flatten NxCxHxW to HWxNxC
vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds]
return backbone_out, vision_feats, vision_pos_embeds, feat_sizes
def _prepare_backbone_features_per_frame(self, img_batch, img_ids):
"""Compute the image backbone features on the fly for the given img_ids."""
# Only forward backbone on unique image ids to avoid repeatitive computation
# (if `img_ids` has only one element, it's already unique so we skip this step).
if img_ids.numel() > 1:
unique_img_ids, inv_ids = torch.unique(img_ids, return_inverse=True)
else:
unique_img_ids, inv_ids = img_ids, None
# Compute the image features on those unique image ids
image = img_batch[unique_img_ids]
backbone_out = self.forward_image(image)
(
_,
vision_feats,
vision_pos_embeds,
feat_sizes,
) = self._prepare_backbone_features(backbone_out)
# Inverse-map image features for `unique_img_ids` to the final image features
# for the original input `img_ids`.
if inv_ids is not None:
image = image[inv_ids]
vision_feats = [x[:, inv_ids] for x in vision_feats]
vision_pos_embeds = [x[:, inv_ids] for x in vision_pos_embeds]
return image, vision_feats, vision_pos_embeds, feat_sizes
def cal_mem_score(self, object_score_logits, iou_score):
object_score_norm = torch.where(
object_score_logits > 0,
object_score_logits.sigmoid() * 2 - 1, ## rescale to [0, 1]
torch.zeros_like(object_score_logits),
)
score_per_frame = (object_score_norm * iou_score).mean()
return score_per_frame
def frame_filter(self, output_dict, track_in_reverse, frame_idx, num_frames, r):
if (frame_idx == 0 and not track_in_reverse) or (
frame_idx == num_frames - 1 and track_in_reverse
):
return []
max_num = min(
num_frames, self.max_obj_ptrs_in_encoder
) ## maximum number of pointer memory frames to consider
if not track_in_reverse:
start = frame_idx - 1
end = 0
step = -r
must_include = frame_idx - 1
else:
start = frame_idx + 1
end = num_frames
step = r
must_include = frame_idx + 1
valid_indices = []
for i in range(start, end, step):
if (
i not in output_dict["non_cond_frame_outputs"]
or "eff_iou_score" not in output_dict["non_cond_frame_outputs"][i]
):
continue
score_per_frame = output_dict["non_cond_frame_outputs"][i]["eff_iou_score"]
if score_per_frame > self.mf_threshold: # threshold
valid_indices.insert(0, i)
if len(valid_indices) >= max_num - 1:
break
if must_include not in valid_indices:
valid_indices.append(must_include)
return valid_indices
def _prepare_memory_conditioned_features(
self,
frame_idx,
is_init_cond_frame,
current_vision_feats,
current_vision_pos_embeds,
feat_sizes,
output_dict,
num_frames,
track_in_reverse=False, # tracking in reverse time order (for demo usage)
use_prev_mem_frame=True,
):
"""Fuse the current frame's visual feature map with previous memory."""
B = current_vision_feats[-1].size(1) # batch size on this frame
C = self.hidden_dim
H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
device = current_vision_feats[-1].device
# The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images.
# In this case, we skip the fusion with any memory.
if self.num_maskmem == 0: # Disable memory and skip fusion
pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
return pix_feat
num_obj_ptr_tokens = 0
tpos_sign_mul = -1 if track_in_reverse else 1
# Step 1: condition the visual features of the current frame on previous memories
if not is_init_cond_frame and use_prev_mem_frame:
# Retrieve the memories encoded with the maskmem backbone
to_cat_prompt, to_cat_prompt_mask, to_cat_prompt_pos_embed = [], [], []
# Add conditioning frames's output first (all cond frames have t_pos=0 for
# when getting temporal positional embedding below)
assert len(output_dict["cond_frame_outputs"]) > 0
# Select a maximum number of temporally closest cond frames for cross attention
cond_outputs = output_dict["cond_frame_outputs"]
selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames(
frame_idx,
cond_outputs,
self.max_cond_frames_in_attn,
keep_first_cond_frame=self.keep_first_cond_frame,
)
t_pos_and_prevs = [
((frame_idx - t) * tpos_sign_mul, out, True)
for t, out in selected_cond_outputs.items()
]
# Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory
# the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1
# We also allow taking the memory frame non-consecutively (with r>1), in which case
# we take (self.num_maskmem - 2) frames among every r-th frames plus the last frame.
r = 1 if self.training else self.memory_temporal_stride_for_eval
if self.use_memory_selection:
valid_indices = self.frame_filter(
output_dict, track_in_reverse, frame_idx, num_frames, r
)
for t_pos in range(1, self.num_maskmem):
t_rel = self.num_maskmem - t_pos # how many frames before current frame
if self.use_memory_selection:
if t_rel > len(valid_indices):
continue
prev_frame_idx = valid_indices[-t_rel]
else:
if t_rel == 1:
# for t_rel == 1, we take the last frame (regardless of r)
if not track_in_reverse:
# the frame immediately before this frame (i.e. frame_idx - 1)
prev_frame_idx = frame_idx - t_rel
else:
# the frame immediately after this frame (i.e. frame_idx + 1)
prev_frame_idx = frame_idx + t_rel
else:
# for t_rel >= 2, we take the memory frame from every r-th frames
if not track_in_reverse:
# first find the nearest frame among every r-th frames before this frame
# for r=1, this would be (frame_idx - 2)
prev_frame_idx = ((frame_idx - 2) // r) * r
# then seek further among every r-th frames
prev_frame_idx = prev_frame_idx - (t_rel - 2) * r
else:
# first find the nearest frame among every r-th frames after this frame
# for r=1, this would be (frame_idx + 2)
prev_frame_idx = -(-(frame_idx + 2) // r) * r
# then seek further among every r-th frames
prev_frame_idx = prev_frame_idx + (t_rel - 2) * r
out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None)
if out is None:
# If an unselected conditioning frame is among the last (self.num_maskmem - 1)
# frames, we still attend to it as if it's a non-conditioning frame.
out = unselected_cond_outputs.get(prev_frame_idx, None)
t_pos_and_prevs.append((t_pos, out, False))
for t_pos, prev, is_selected_cond_frame in t_pos_and_prevs:
if prev is None:
continue # skip padding frames
# "maskmem_features" might have been offloaded to CPU in demo use cases,
# so we load it back to GPU (it's a no-op if it's already on GPU).
feats = prev["maskmem_features"].cuda(non_blocking=True)
seq_len = feats.shape[-2] * feats.shape[-1]
to_cat_prompt.append(feats.flatten(2).permute(2, 0, 1))
to_cat_prompt_mask.append(
torch.zeros(B, seq_len, device=device, dtype=bool)
)
# Spatial positional encoding (it might have been offloaded to CPU in eval)
maskmem_enc = prev["maskmem_pos_enc"][-1].cuda()
maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1)
if (
is_selected_cond_frame
and getattr(self, "cond_frame_spatial_embedding", None) is not None
):
# add a spatial embedding for the conditioning frame
maskmem_enc = maskmem_enc + self.cond_frame_spatial_embedding
# Temporal positional encoding
t = t_pos if not is_selected_cond_frame else 0
maskmem_enc = (
maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t - 1]
)
to_cat_prompt_pos_embed.append(maskmem_enc)
# Construct the list of past object pointers
# Optionally, select only a subset of spatial memory frames during trainining
if (
self.training
and self.prob_to_dropout_spatial_mem > 0
and self.rng.random() < self.prob_to_dropout_spatial_mem
):
num_spatial_mem_keep = self.rng.integers(len(to_cat_prompt) + 1)
keep = self.rng.choice(
range(len(to_cat_prompt)), num_spatial_mem_keep, replace=False
).tolist()
to_cat_prompt = [to_cat_prompt[i] for i in keep]
to_cat_prompt_mask = [to_cat_prompt_mask[i] for i in keep]
to_cat_prompt_pos_embed = [to_cat_prompt_pos_embed[i] for i in keep]
max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
# First add those object pointers from selected conditioning frames
# (optionally, only include object pointers in the past during evaluation)
if not self.training:
ptr_cond_outputs = {
t: out
for t, out in selected_cond_outputs.items()
if (t >= frame_idx if track_in_reverse else t <= frame_idx)
}
else:
ptr_cond_outputs = selected_cond_outputs
pos_and_ptrs = [
# Temporal pos encoding contains how far away each pointer is from current frame
(
(frame_idx - t) * tpos_sign_mul,
out["obj_ptr"],
True, # is_selected_cond_frame
)
for t, out in ptr_cond_outputs.items()
]
# Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame
for t_diff in range(1, max_obj_ptrs_in_encoder):
if not self.use_memory_selection:
t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff
if t < 0 or (num_frames is not None and t >= num_frames):
break
else:
if -t_diff <= -len(valid_indices):
break
t = valid_indices[-t_diff]
out = output_dict["non_cond_frame_outputs"].get(
t, unselected_cond_outputs.get(t, None)
)
if out is not None:
pos_and_ptrs.append((t_diff, out["obj_ptr"], False))
# If we have at least one object pointer, add them to the across attention
if len(pos_and_ptrs) > 0:
pos_list, ptrs_list, is_selected_cond_frame_list = zip(*pos_and_ptrs)
# stack object pointers along dim=0 into [ptr_seq_len, B, C] shape
obj_ptrs = torch.stack(ptrs_list, dim=0)
if getattr(self, "cond_frame_obj_ptr_embedding", None) is not None:
obj_ptrs = (
obj_ptrs
+ self.cond_frame_obj_ptr_embedding
* torch.tensor(is_selected_cond_frame_list, device=device)[
..., None, None
].float()
)
# a temporal positional embedding based on how far each object pointer is from
# the current frame (sine embedding normalized by the max pointer num).
obj_pos = self._get_tpos_enc(
pos_list,
max_abs_pos=max_obj_ptrs_in_encoder,
device=device,
)
# expand to batch size
obj_pos = obj_pos.unsqueeze(1).expand(-1, B, -1)
if self.mem_dim < C:
# split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C
obj_ptrs = obj_ptrs.reshape(-1, B, C // self.mem_dim, self.mem_dim)
obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1)
obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0)
to_cat_prompt.append(obj_ptrs)
to_cat_prompt_mask.append(None) # "to_cat_prompt_mask" is not used
to_cat_prompt_pos_embed.append(obj_pos)
num_obj_ptr_tokens = obj_ptrs.shape[0]
else:
num_obj_ptr_tokens = 0
else:
# directly add no-mem embedding (instead of using the transformer encoder)
pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed
pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
return pix_feat_with_mem
# Use a dummy token on the first grame (to avoid emtpy memory input to tranformer encoder)
to_cat_prompt = [self.no_mem_embed.expand(1, B, self.mem_dim)]
to_cat_prompt_mask = [torch.zeros(B, 1, device=device, dtype=bool)]
to_cat_prompt_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)]
# Step 2: Concatenate the memories and forward through the transformer encoder
prompt = torch.cat(to_cat_prompt, dim=0)
prompt_mask = None # For now, we always masks are zeros anyways
prompt_pos_embed = torch.cat(to_cat_prompt_pos_embed, dim=0)
encoder_out = self.transformer.encoder(
src=current_vision_feats,
src_key_padding_mask=[None],
src_pos=current_vision_pos_embeds,
prompt=prompt,
prompt_pos=prompt_pos_embed,
prompt_key_padding_mask=prompt_mask,
feat_sizes=feat_sizes,
num_obj_ptr_tokens=num_obj_ptr_tokens,
)
# reshape the output (HW)BC => BCHW
pix_feat_with_mem = encoder_out["memory"].permute(1, 2, 0).view(B, C, H, W)
return pix_feat_with_mem
def _encode_new_memory(
self,
image,
current_vision_feats,
feat_sizes,
pred_masks_high_res,
object_score_logits,
is_mask_from_pts,
output_dict=None,
is_init_cond_frame=False,
):
"""Encode the current image and its prediction into a memory feature."""
B = current_vision_feats[-1].size(1) # batch size on this frame
C = self.hidden_dim
H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
# top-level feature, (HW)BC => BCHW
pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
if self.non_overlap_masks_for_mem_enc and not self.training:
# optionally, apply non-overlapping constraints to the masks (it's applied
# in the batch dimension and should only be used during eval, where all
# the objects come from the same video under batch size 1).
pred_masks_high_res = self._apply_non_overlapping_constraints(
pred_masks_high_res
)
# scale the raw mask logits with a temperature before applying sigmoid
if is_mask_from_pts and not self.training:
mask_for_mem = (pred_masks_high_res > 0).float()
else:
# apply sigmoid on the raw mask logits to turn them into range (0, 1)
mask_for_mem = torch.sigmoid(pred_masks_high_res)
# apply scale and bias terms to the sigmoid probabilities
if self.sigmoid_scale_for_mem_enc != 1.0:
mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
if self.sigmoid_bias_for_mem_enc != 0.0:
mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
if isinstance(self.maskmem_backbone, SimpleMaskEncoder):
pix_feat = pix_feat.view_as(pix_feat)
maskmem_out = self.maskmem_backbone(
pix_feat, mask_for_mem, skip_mask_sigmoid=True
)
else:
maskmem_out = self.maskmem_backbone(image, pix_feat, mask_for_mem)
# Clone the feats and pos_enc to enable compilation
maskmem_features = self._maybe_clone(maskmem_out["vision_features"])
maskmem_pos_enc = [self._maybe_clone(m) for m in maskmem_out["vision_pos_enc"]]
# add a no-object embedding to the spatial memory to indicate that the frame
# is predicted to be occluded (i.e. no object is appearing in the frame)
is_obj_appearing = (object_score_logits > 0).float()
maskmem_features += (
1 - is_obj_appearing[..., None, None]
) * self.no_obj_embed_spatial[..., None, None].expand(*maskmem_features.shape)
return maskmem_features, maskmem_pos_enc
def forward_tracking(self, backbone_out, input, return_dict=False):
"""Forward video tracking on each frame (and sample correction clicks)."""
img_feats_already_computed = backbone_out["backbone_fpn"] is not None
if img_feats_already_computed:
# Prepare the backbone features
# - vision_feats and vision_pos_embeds are in (HW)BC format
(
_,
vision_feats,
vision_pos_embeds,
feat_sizes,
) = self._prepare_backbone_features(backbone_out)
# Starting the stage loop
num_frames = backbone_out["num_frames"]
init_cond_frames = backbone_out["init_cond_frames"]
frames_to_add_correction_pt = backbone_out["frames_to_add_correction_pt"]
# first process all the initial conditioning frames to encode them as memory,
# and then conditioning on them to track the remaining frames
processing_order = init_cond_frames + backbone_out["frames_not_in_init_cond"]
output_dict = {
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
}
for stage_id in processing_order:
# Get the image features for the current frames
img_ids = input.find_inputs[stage_id].img_ids
if img_feats_already_computed:
# Retrieve image features according to img_ids (if they are already computed).
current_image = input.img_batch[img_ids]
current_vision_feats = [x[:, img_ids] for x in vision_feats]
current_vision_pos_embeds = [x[:, img_ids] for x in vision_pos_embeds]
else:
# Otherwise, compute the image features on the fly for the given img_ids
# (this might be used for evaluation on long videos to avoid backbone OOM).
(
current_image,
current_vision_feats,
current_vision_pos_embeds,
feat_sizes,
) = self._prepare_backbone_features_per_frame(input.img_batch, img_ids)
# Get output masks based on this frame's prompts and previous memory
current_out = self.track_step(
frame_idx=stage_id,
is_init_cond_frame=stage_id in init_cond_frames,
current_vision_feats=current_vision_feats,
current_vision_pos_embeds=current_vision_pos_embeds,
feat_sizes=feat_sizes,
image=current_image,
point_inputs=backbone_out["point_inputs_per_frame"].get(stage_id, None),
mask_inputs=backbone_out["mask_inputs_per_frame"].get(stage_id, None),
gt_masks=backbone_out["gt_masks_per_frame"].get(stage_id, None),
frames_to_add_correction_pt=frames_to_add_correction_pt,
output_dict=output_dict,
num_frames=num_frames,
)
# Append the output, depending on whether it's a conditioning frame
add_output_as_cond_frame = stage_id in init_cond_frames or (
self.add_all_frames_to_correct_as_cond
and stage_id in frames_to_add_correction_pt
)
if add_output_as_cond_frame:
output_dict["cond_frame_outputs"][stage_id] = current_out
else:
output_dict["non_cond_frame_outputs"][stage_id] = current_out
if return_dict:
return output_dict
# turn `output_dict` into a list for loss function
all_frame_outputs = {}
all_frame_outputs.update(output_dict["cond_frame_outputs"])
all_frame_outputs.update(output_dict["non_cond_frame_outputs"])
all_frame_outputs = [all_frame_outputs[t] for t in range(num_frames)]
# Make DDP happy with activation checkpointing by removing unused keys
all_frame_outputs = [
{k: v for k, v in d.items() if k != "obj_ptr"} for d in all_frame_outputs
]
return all_frame_outputs
def track_step(
self,
frame_idx,
is_init_cond_frame,
current_vision_feats,
current_vision_pos_embeds,
feat_sizes,
image,
point_inputs,
mask_inputs,
output_dict,
num_frames,
track_in_reverse=False, # tracking in reverse time order (for demo usage)
# Whether to run the memory encoder on the predicted masks. Sometimes we might want
# to skip the memory encoder with `run_mem_encoder=False`. For example,
# in demo we might call `track_step` multiple times for each user click,
# and only encode the memory when the user finalizes their clicks. And in ablation
# settings like SAM training on static images, we don't need the memory encoder.
run_mem_encoder=True,
# The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
prev_sam_mask_logits=None,
use_prev_mem_frame=True,
):
current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs}
# High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW
if len(current_vision_feats) > 1:
high_res_features = [
x.permute(1, 2, 0).view(x.size(1), x.size(2), *s)
for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1])
]
else:
high_res_features = None
if mask_inputs is not None:
# (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
pix_feat = current_vision_feats[-1].permute(1, 2, 0)
pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
sam_outputs = self._use_mask_as_output(
pix_feat, high_res_features, mask_inputs
)
else:
# fused the visual feature with previous memory features in the memory bank
pix_feat_with_mem = self._prepare_memory_conditioned_features(
frame_idx=frame_idx,
is_init_cond_frame=is_init_cond_frame,
current_vision_feats=current_vision_feats[-1:],
current_vision_pos_embeds=current_vision_pos_embeds[-1:],
feat_sizes=feat_sizes[-1:],
output_dict=output_dict,
num_frames=num_frames,
track_in_reverse=track_in_reverse,
use_prev_mem_frame=use_prev_mem_frame,
)
# apply SAM-style segmentation head
# here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder,
# e.g. in demo where such logits come from earlier interaction instead of correction sampling
# (in this case, the SAM mask decoder should have `self.iter_use_prev_mask_pred=True`, and
# any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead)
if prev_sam_mask_logits is not None:
assert self.iter_use_prev_mask_pred
assert point_inputs is not None and mask_inputs is None
mask_inputs = prev_sam_mask_logits
multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
sam_outputs = self._forward_sam_heads(
backbone_features=pix_feat_with_mem,
point_inputs=point_inputs,
mask_inputs=mask_inputs,
high_res_features=high_res_features,
multimask_output=multimask_output,
)
(
_,
high_res_multimasks,
ious,
low_res_masks,
high_res_masks,
obj_ptr,
object_score_logits,
) = sam_outputs
# Use the final prediction (after all correction steps for output and eval)
current_out["pred_masks"] = low_res_masks
current_out["pred_masks_high_res"] = high_res_masks
current_out["obj_ptr"] = obj_ptr
if self.use_memory_selection:
current_out["object_score_logits"] = object_score_logits
iou_score = ious.max(-1)[0]
current_out["iou_score"] = iou_score
current_out["eff_iou_score"] = self.cal_mem_score(
object_score_logits, iou_score
)
if not self.training:
# Only add this in inference (to avoid unused param in activation checkpointing;
# it's mainly used in the demo to encode spatial memories w/ consolidated masks)
current_out["object_score_logits"] = object_score_logits
# Finally run the memory encoder on the predicted mask to encode
# it into a new memory feature (that can be used in future frames)
# (note that `self.num_maskmem == 0` is primarily used for reproducing SAM on
# images, in which case we'll just skip memory encoder to save compute).
if run_mem_encoder and self.num_maskmem > 0:
high_res_masks_for_mem_enc = high_res_masks
maskmem_features, maskmem_pos_enc = self._encode_new_memory(
image=image,
current_vision_feats=current_vision_feats,
feat_sizes=feat_sizes,
pred_masks_high_res=high_res_masks_for_mem_enc,
object_score_logits=object_score_logits,
is_mask_from_pts=(point_inputs is not None),
output_dict=output_dict,
is_init_cond_frame=is_init_cond_frame,
)
current_out["maskmem_features"] = maskmem_features
current_out["maskmem_pos_enc"] = maskmem_pos_enc
else:
current_out["maskmem_features"] = None
current_out["maskmem_pos_enc"] = None
# Optionally, offload the outputs to CPU memory during evaluation to avoid
# GPU OOM on very long videos or very large resolution or too many objects
if self.offload_output_to_cpu_for_eval and not self.training:
# Here we only keep those keys needed for evaluation to get a compact output
trimmed_out = {
"pred_masks": current_out["pred_masks"].cpu(),
"pred_masks_high_res": current_out["pred_masks_high_res"].cpu(),
# other items for evaluation (these are small tensors so we keep them on GPU)
"obj_ptr": current_out["obj_ptr"],
"object_score_logits": current_out["object_score_logits"],
}
if run_mem_encoder and self.num_maskmem > 0:
trimmed_out["maskmem_features"] = maskmem_features.cpu()
trimmed_out["maskmem_pos_enc"] = [x.cpu() for x in maskmem_pos_enc]
if self.use_memory_selection:
trimmed_out["iou_score"] = current_out["iou_score"].cpu()
trimmed_out["eff_iou_score"] = current_out["eff_iou_score"].cpu()
current_out = trimmed_out
# Optionally, trim the output of past non-conditioning frame (r * num_maskmem frames
# before the current frame) during evaluation. This is intended to save GPU or CPU
# memory for semi-supervised VOS eval, where only the first frame receives prompts.
def _trim_past_out(past_out, current_out):
if past_out is None:
return None
return {
"pred_masks": past_out["pred_masks"],
"obj_ptr": past_out["obj_ptr"],
"object_score_logits": past_out["object_score_logits"],
}
if self.trim_past_non_cond_mem_for_eval and not self.training:
r = self.memory_temporal_stride_for_eval
past_frame_idx = frame_idx - r * self.num_maskmem
past_out = output_dict["non_cond_frame_outputs"].get(past_frame_idx, None)
if past_out is not None:
print(past_out.get("eff_iou_score", 0))
if (
self.use_memory_selection
and past_out.get("eff_iou_score", 0) < self.mf_threshold
) or not self.use_memory_selection:
output_dict["non_cond_frame_outputs"][past_frame_idx] = (
_trim_past_out(past_out, current_out)
)
if (
self.use_memory_selection and not self.offload_output_to_cpu_for_eval
): ## design for memory selection, trim too old frames to save memory
far_old_frame_idx = frame_idx - 20 * self.max_obj_ptrs_in_encoder
past_out = output_dict["non_cond_frame_outputs"].get(
far_old_frame_idx, None
)
if past_out is not None:
output_dict["non_cond_frame_outputs"][far_old_frame_idx] = (
_trim_past_out(past_out, current_out)
)
return current_out
def _use_multimask(self, is_init_cond_frame, point_inputs):
"""Whether to use multimask output in the SAM head."""
num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1)
multimask_output = (
self.multimask_output_in_sam
and (is_init_cond_frame or self.multimask_output_for_tracking)
and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num)
)
return multimask_output
def _apply_non_overlapping_constraints(self, pred_masks):
"""
Apply non-overlapping constraints to the object scores in pred_masks. Here we
keep only the highest scoring object at each spatial location in pred_masks.
"""
batch_size = pred_masks.size(0)
if batch_size == 1:
return pred_masks
device = pred_masks.device
# "max_obj_inds": object index of the object with the highest score at each location
max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True)
# "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks`
batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None]
keep = max_obj_inds == batch_obj_inds
# suppress overlapping regions' scores below -10.0 so that the foreground regions
# don't overlap (here sigmoid(-10.0)=4.5398e-05)
pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0))
return pred_masks
def _compile_all_components(self):
"""Compile all model components for faster inference."""
# a larger cache size to hold varying number of shapes for torch.compile
# see https://github.com/pytorch/pytorch/blob/v2.5.1/torch/_dynamo/config.py#L42-L49
torch._dynamo.config.cache_size_limit = 64
torch._dynamo.config.accumulated_cache_size_limit = 2048
from sam3.perflib.compile import compile_wrapper
logging.info("Compiling all components. First time may be very slow.")
self.maskmem_backbone.forward = compile_wrapper(
self.maskmem_backbone.forward,
mode="max-autotune",
fullgraph=True,
dynamic=False,
)
self.transformer.encoder.forward = compile_wrapper(
self.transformer.encoder.forward,
mode="max-autotune",
fullgraph=True,
dynamic=True, # Num. of memories varies
)
# We disable compilation of sam_prompt_encoder as it sometimes gives a large accuracy regression,
# especially when sam_mask_prompt (previous mask logits) is not None
# self.sam_prompt_encoder.forward = torch.compile(
# self.sam_prompt_encoder.forward,
# mode="max-autotune",
# fullgraph=True,
# dynamic=False, # Accuracy regression on True
# )
self.sam_mask_decoder.forward = compile_wrapper(
self.sam_mask_decoder.forward,
mode="max-autotune",
fullgraph=True,
dynamic=False, # Accuracy regression on True
)
def _maybe_clone(self, x):
"""Clone a tensor if and only if `self.compile_all_components` is True."""
return x.clone() if self.compile_all_components else x
def concat_points(old_point_inputs, new_points, new_labels):
"""Add new points and labels to previous point inputs (add at the end)."""
if old_point_inputs is None:
points, labels = new_points, new_labels
else:
points = torch.cat([old_point_inputs["point_coords"], new_points], dim=1)
labels = torch.cat([old_point_inputs["point_labels"], new_labels], dim=1)
return {"point_coords": points, "point_labels": labels}
|