File size: 37,532 Bytes
14114e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved

import os
from copy import deepcopy
from typing import Dict, List, Optional, Tuple

import numpy as np
import torch

from sam3.model.model_misc import SAM3Output

from sam3.model.sam1_task_predictor import SAM3InteractiveImagePredictor
from sam3.model.vl_combiner import SAM3VLBackbone
from sam3.perflib.nms import nms_masks

from sam3.train.data.collator import BatchedDatapoint

from .act_ckpt_utils import activation_ckpt_wrapper

from .box_ops import box_cxcywh_to_xyxy

from .geometry_encoders import Prompt
from .model_misc import inverse_sigmoid


def _update_out(out, out_name, out_value, auxiliary=True, update_aux=True):
    out[out_name] = out_value[-1] if auxiliary else out_value
    if auxiliary and update_aux:
        if "aux_outputs" not in out:
            out["aux_outputs"] = [{} for _ in range(len(out_value) - 1)]
        assert len(out["aux_outputs"]) == len(out_value) - 1
        for aux_output, aux_value in zip(out["aux_outputs"], out_value[:-1]):
            aux_output[out_name] = aux_value


class Sam3Image(torch.nn.Module):
    TEXT_ID_FOR_TEXT = 0
    TEXT_ID_FOR_VISUAL = 1
    TEXT_ID_FOR_GEOMETRIC = 2

    def __init__(
        self,
        backbone: SAM3VLBackbone,
        transformer,
        input_geometry_encoder,
        segmentation_head=None,
        num_feature_levels=1,
        o2m_mask_predict=True,
        dot_prod_scoring=None,
        use_instance_query: bool = True,
        multimask_output: bool = True,
        use_act_checkpoint_seg_head: bool = True,
        interactivity_in_encoder: bool = True,
        matcher=None,
        use_dot_prod_scoring=True,
        supervise_joint_box_scores: bool = False,  # only relevant if using presence token/score
        detach_presence_in_joint_score: bool = False,  # only relevant if using presence token/score
        separate_scorer_for_instance: bool = False,
        num_interactive_steps_val: int = 0,
        inst_interactive_predictor: SAM3InteractiveImagePredictor = None,
        **kwargs,
    ):
        super().__init__()
        self.backbone = backbone
        self.geometry_encoder = input_geometry_encoder
        self.transformer = transformer
        self.hidden_dim = transformer.d_model
        self.num_feature_levels = num_feature_levels
        self.segmentation_head = segmentation_head

        self.o2m_mask_predict = o2m_mask_predict

        self.dot_prod_scoring = dot_prod_scoring
        self.use_act_checkpoint_seg_head = use_act_checkpoint_seg_head
        self.interactivity_in_encoder = interactivity_in_encoder
        self.matcher = matcher

        self.num_interactive_steps_val = num_interactive_steps_val
        self.use_dot_prod_scoring = use_dot_prod_scoring

        if self.use_dot_prod_scoring:
            assert dot_prod_scoring is not None
            self.dot_prod_scoring = dot_prod_scoring
            self.instance_dot_prod_scoring = None
            if separate_scorer_for_instance:
                self.instance_dot_prod_scoring = deepcopy(dot_prod_scoring)
        else:
            self.class_embed = torch.nn.Linear(self.hidden_dim, 1)
            self.instance_class_embed = None
            if separate_scorer_for_instance:
                self.instance_class_embed = deepcopy(self.class_embed)

        self.supervise_joint_box_scores = supervise_joint_box_scores
        self.detach_presence_in_joint_score = detach_presence_in_joint_score

        # verify the number of queries for O2O and O2M
        num_o2o_static = self.transformer.decoder.num_queries
        num_o2m_static = self.transformer.decoder.num_o2m_queries
        assert num_o2m_static == (num_o2o_static if self.transformer.decoder.dac else 0)
        self.dac = self.transformer.decoder.dac

        self.use_instance_query = use_instance_query
        self.multimask_output = multimask_output

        self.inst_interactive_predictor = inst_interactive_predictor

    @property
    def device(self):
        self._device = getattr(self, "_device", None) or next(self.parameters()).device
        return self._device

    def to(self, *args, **kwargs):
        # clear cached _device in case the model is moved to a different device
        self._device = None
        return super().to(*args, **kwargs)

    def _get_img_feats(self, backbone_out, img_ids):
        """Retrieve correct image features from backbone output."""
        if "backbone_fpn" in backbone_out:
            if "id_mapping" in backbone_out and backbone_out["id_mapping"] is not None:
                img_ids = backbone_out["id_mapping"][img_ids]
                # If this assert fails, it likely means we're requesting different img_ids (perhaps a different frame?)
                # We currently don't expect this to happen. We could technically trigger a recompute here,
                # but likely at the cost of a cpu<->gpu sync point, which would deteriorate perf
                torch._assert_async((img_ids >= 0).all())

            vis_feats = backbone_out["backbone_fpn"][-self.num_feature_levels :]
            vis_pos_enc = backbone_out["vision_pos_enc"][-self.num_feature_levels :]
            vis_feat_sizes = [x.shape[-2:] for x in vis_pos_enc]  # (H, W) shapes
            # index and flatten visual features NxCxHxW => HWxNxC (batch-first => seq-first)
            img_feats = [x[img_ids].flatten(2).permute(2, 0, 1) for x in vis_feats]
            img_pos_embeds = [
                x[img_ids].flatten(2).permute(2, 0, 1) for x in vis_pos_enc
            ]
            return backbone_out, img_feats, img_pos_embeds, vis_feat_sizes

        # Image features not available in backbone output, so we compute them on the fly
        # This case likely occurs for video. In that case, we want to forward only the current frame
        img_batch = backbone_out["img_batch_all_stages"]
        if img_ids.numel() > 1:
            # Only forward backbone on unique image ids to avoid repetitive computation
            unique_ids, _ = torch.unique(img_ids, return_inverse=True)
        else:
            unique_ids, _ = img_ids, slice(None)
        # Compute the image features on those unique image ids
        # note: we allow using a list (or other indexable types) of tensors as img_batch
        # (e.g. for async frame loading in demo). In this case we index img_batch.tensors directly
        if isinstance(img_batch, torch.Tensor):
            image = img_batch[unique_ids]
        elif unique_ids.numel() == 1:
            image = img_batch[unique_ids.item()].unsqueeze(0)
        else:
            image = torch.stack([img_batch[i] for i in unique_ids.tolist()])
        # `img_batch` might be fp16 and offloaded to CPU
        image = image.to(dtype=torch.float32, device=self.device)
        # Next time we call this function, we want to remember which indices we computed
        id_mapping = torch.full(
            (len(img_batch),), -1, dtype=torch.long, device=self.device
        )
        id_mapping[unique_ids] = torch.arange(len(unique_ids), device=self.device)
        backbone_out = {
            **backbone_out,
            **self.backbone.forward_image(image),
            "id_mapping": id_mapping,
        }
        assert "backbone_fpn" in backbone_out
        return self._get_img_feats(backbone_out, img_ids=img_ids)

    def _encode_prompt(
        self,
        backbone_out,
        find_input,
        geometric_prompt,
        visual_prompt_embed=None,
        visual_prompt_mask=None,
        encode_text=True,
        prev_mask_pred=None,
    ):
        # index text features (note that regardless of early or late fusion, the batch size of
        # `txt_feats` is always the number of *prompts* in the encoder)
        txt_ids = find_input.text_ids
        txt_feats = backbone_out["language_features"][:, txt_ids]
        txt_masks = backbone_out["language_mask"][txt_ids]

        feat_tuple = self._get_img_feats(backbone_out, find_input.img_ids)
        backbone_out, img_feats, img_pos_embeds, vis_feat_sizes = feat_tuple

        if prev_mask_pred is not None:
            img_feats = [img_feats[-1] + prev_mask_pred]
        # Encode geometry
        geo_feats, geo_masks = self.geometry_encoder(
            geo_prompt=geometric_prompt,
            img_feats=img_feats,
            img_sizes=vis_feat_sizes,
            img_pos_embeds=img_pos_embeds,
        )
        if visual_prompt_embed is None:
            visual_prompt_embed = torch.zeros(
                (0, *geo_feats.shape[1:]), device=geo_feats.device
            )
            visual_prompt_mask = torch.zeros(
                (*geo_masks.shape[:-1], 0),
                device=geo_masks.device,
                dtype=geo_masks.dtype,
            )
        if encode_text:
            prompt = torch.cat([txt_feats, geo_feats, visual_prompt_embed], dim=0)
            prompt_mask = torch.cat([txt_masks, geo_masks, visual_prompt_mask], dim=1)
        else:
            prompt = torch.cat([geo_feats, visual_prompt_embed], dim=0)
            prompt_mask = torch.cat([geo_masks, visual_prompt_mask], dim=1)
        return prompt, prompt_mask, backbone_out

    def _run_encoder(
        self,
        backbone_out,
        find_input,
        prompt,
        prompt_mask,
        encoder_extra_kwargs: Optional[Dict] = None,
    ):
        feat_tuple = self._get_img_feats(backbone_out, find_input.img_ids)
        backbone_out, img_feats, img_pos_embeds, vis_feat_sizes = feat_tuple

        # Run the encoder
        prompt_pos_embed = torch.zeros_like(prompt)
        # make a copy of the image feature lists since the encoder may modify these lists in-place
        memory = self.transformer.encoder(
            src=img_feats.copy(),
            src_key_padding_mask=None,
            src_pos=img_pos_embeds.copy(),
            prompt=prompt,
            prompt_pos=prompt_pos_embed,
            prompt_key_padding_mask=prompt_mask,
            feat_sizes=vis_feat_sizes,
            encoder_extra_kwargs=encoder_extra_kwargs,
        )
        encoder_out = {
            # encoded image features
            "encoder_hidden_states": memory["memory"],
            "pos_embed": memory["pos_embed"],
            "padding_mask": memory["padding_mask"],
            "level_start_index": memory["level_start_index"],
            "spatial_shapes": memory["spatial_shapes"],
            "valid_ratios": memory["valid_ratios"],
            "vis_feat_sizes": vis_feat_sizes,
            # encoded text features (or other prompts)
            "prompt_before_enc": prompt,
            "prompt_after_enc": memory.get("memory_text", prompt),
            "prompt_mask": prompt_mask,
        }
        return backbone_out, encoder_out, feat_tuple

    def _run_decoder(
        self,
        pos_embed,
        memory,
        src_mask,
        out,
        prompt,
        prompt_mask,
        encoder_out,
    ):
        bs = memory.shape[1]
        query_embed = self.transformer.decoder.query_embed.weight
        tgt = query_embed.unsqueeze(1).repeat(1, bs, 1)

        apply_dac = self.transformer.decoder.dac and self.training
        hs, reference_boxes, dec_presence_out, dec_presence_feats = (
            self.transformer.decoder(
                tgt=tgt,
                memory=memory,
                memory_key_padding_mask=src_mask,
                pos=pos_embed,
                reference_boxes=None,
                level_start_index=encoder_out["level_start_index"],
                spatial_shapes=encoder_out["spatial_shapes"],
                valid_ratios=encoder_out["valid_ratios"],
                tgt_mask=None,
                memory_text=prompt,
                text_attention_mask=prompt_mask,
                apply_dac=apply_dac,
            )
        )
        hs = hs.transpose(1, 2)  # seq-first to batch-first
        reference_boxes = reference_boxes.transpose(1, 2)  # seq-first to batch-first
        if dec_presence_out is not None:
            # seq-first to batch-first
            dec_presence_out = dec_presence_out.transpose(1, 2)

        out["presence_feats"] = dec_presence_feats
        self._update_scores_and_boxes(
            out,
            hs,
            reference_boxes,
            prompt,
            prompt_mask,
            dec_presence_out=dec_presence_out,
        )
        return out, hs

    def _update_scores_and_boxes(
        self,
        out,
        hs,
        reference_boxes,
        prompt,
        prompt_mask,
        dec_presence_out=None,
        is_instance_prompt=False,
    ):
        apply_dac = self.transformer.decoder.dac and self.training
        num_o2o = (hs.size(2) // 2) if apply_dac else hs.size(2)
        num_o2m = hs.size(2) - num_o2o
        assert num_o2m == (num_o2o if apply_dac else 0)
        out["queries"] = hs[-1][:, :num_o2o]  # remove o2m queries if there are any
        # score prediction
        if self.use_dot_prod_scoring:
            dot_prod_scoring_head = self.dot_prod_scoring
            if is_instance_prompt and self.instance_dot_prod_scoring is not None:
                dot_prod_scoring_head = self.instance_dot_prod_scoring
            outputs_class = dot_prod_scoring_head(hs, prompt, prompt_mask)
        else:
            class_embed_head = self.class_embed
            if is_instance_prompt and self.instance_class_embed is not None:
                class_embed_head = self.instance_class_embed
            outputs_class = class_embed_head(hs)

        # box prediction
        box_head = self.transformer.decoder.bbox_embed
        if (
            is_instance_prompt
            and self.transformer.decoder.instance_bbox_embed is not None
        ):
            box_head = self.transformer.decoder.instance_bbox_embed
        anchor_box_offsets = box_head(hs)
        reference_boxes_inv_sig = inverse_sigmoid(reference_boxes)
        outputs_coord = (reference_boxes_inv_sig + anchor_box_offsets).sigmoid()
        outputs_boxes_xyxy = box_cxcywh_to_xyxy(outputs_coord)

        if dec_presence_out is not None:
            _update_out(
                out, "presence_logit_dec", dec_presence_out, update_aux=self.training
            )

        if self.supervise_joint_box_scores:
            assert dec_presence_out is not None
            prob_dec_presence_out = dec_presence_out.clone().sigmoid()
            if self.detach_presence_in_joint_score:
                prob_dec_presence_out = prob_dec_presence_out.detach()

            outputs_class = inverse_sigmoid(
                outputs_class.sigmoid() * prob_dec_presence_out.unsqueeze(2)
            ).clamp(min=-10.0, max=10.0)

        _update_out(
            out, "pred_logits", outputs_class[:, :, :num_o2o], update_aux=self.training
        )
        _update_out(
            out, "pred_boxes", outputs_coord[:, :, :num_o2o], update_aux=self.training
        )
        _update_out(
            out,
            "pred_boxes_xyxy",
            outputs_boxes_xyxy[:, :, :num_o2o],
            update_aux=self.training,
        )
        if num_o2m > 0 and self.training:
            _update_out(
                out,
                "pred_logits_o2m",
                outputs_class[:, :, num_o2o:],
                update_aux=self.training,
            )
            _update_out(
                out,
                "pred_boxes_o2m",
                outputs_coord[:, :, num_o2o:],
                update_aux=self.training,
            )
            _update_out(
                out,
                "pred_boxes_xyxy_o2m",
                outputs_boxes_xyxy[:, :, num_o2o:],
                update_aux=self.training,
            )

    def _run_segmentation_heads(
        self,
        out,
        backbone_out,
        img_ids,
        vis_feat_sizes,
        encoder_hidden_states,
        prompt,
        prompt_mask,
        hs,
    ):
        apply_dac = self.transformer.decoder.dac and self.training
        if self.segmentation_head is not None:
            num_o2o = (hs.size(2) // 2) if apply_dac else hs.size(2)
            num_o2m = hs.size(2) - num_o2o
            obj_queries = hs if self.o2m_mask_predict else hs[:, :, :num_o2o]
            seg_head_outputs = activation_ckpt_wrapper(self.segmentation_head)(
                backbone_feats=backbone_out["backbone_fpn"],
                obj_queries=obj_queries,
                image_ids=img_ids,
                encoder_hidden_states=encoder_hidden_states,
                act_ckpt_enable=self.training and self.use_act_checkpoint_seg_head,
                prompt=prompt,
                prompt_mask=prompt_mask,
            )
            aux_masks = False  # self.aux_loss and self.segmentation_head.aux_masks
            for k, v in seg_head_outputs.items():
                if k in self.segmentation_head.instance_keys:
                    _update_out(out, k, v[:, :num_o2o], auxiliary=aux_masks)
                    if (
                        self.o2m_mask_predict and num_o2m > 0
                    ):  # handle o2m mask prediction
                        _update_out(
                            out, f"{k}_o2m", v[:, num_o2o:], auxiliary=aux_masks
                        )
                else:
                    out[k] = v
        else:
            backbone_out.pop("backbone_fpn", None)

    def _get_best_mask(self, out):
        prev_mask_idx = out["pred_logits"].argmax(dim=1).squeeze(1)
        batch_idx = torch.arange(
            out["pred_logits"].shape[0], device=prev_mask_idx.device
        )
        prev_mask_pred = out["pred_masks"][batch_idx, prev_mask_idx][:, None]
        # Downsample mask to match image resolution.
        prev_mask_pred = self.geometry_encoder.mask_encoder.mask_downsampler(
            prev_mask_pred
        )
        prev_mask_pred = prev_mask_pred.flatten(-2).permute(2, 0, 1)

        return prev_mask_pred

    def forward_grounding(
        self,
        backbone_out,
        find_input,
        find_target,
        geometric_prompt: Prompt,
    ):
        with torch.profiler.record_function("SAM3Image._encode_prompt"):
            prompt, prompt_mask, backbone_out = self._encode_prompt(
                backbone_out, find_input, geometric_prompt
            )
        # Run the encoder
        with torch.profiler.record_function("SAM3Image._run_encoder"):
            backbone_out, encoder_out, _ = self._run_encoder(
                backbone_out, find_input, prompt, prompt_mask
            )
        out = {
            "encoder_hidden_states": encoder_out["encoder_hidden_states"],
            "prev_encoder_out": {
                "encoder_out": encoder_out,
                "backbone_out": backbone_out,
            },
        }

        # Run the decoder
        with torch.profiler.record_function("SAM3Image._run_decoder"):
            out, hs = self._run_decoder(
                memory=out["encoder_hidden_states"],
                pos_embed=encoder_out["pos_embed"],
                src_mask=encoder_out["padding_mask"],
                out=out,
                prompt=prompt,
                prompt_mask=prompt_mask,
                encoder_out=encoder_out,
            )

        # Run segmentation heads
        with torch.profiler.record_function("SAM3Image._run_segmentation_heads"):
            self._run_segmentation_heads(
                out=out,
                backbone_out=backbone_out,
                img_ids=find_input.img_ids,
                vis_feat_sizes=encoder_out["vis_feat_sizes"],
                encoder_hidden_states=out["encoder_hidden_states"],
                prompt=prompt,
                prompt_mask=prompt_mask,
                hs=hs,
            )

        if self.training or self.num_interactive_steps_val > 0:
            self._compute_matching(out, self.back_convert(find_target))
        return out

    def _postprocess_out(self, out: Dict, multimask_output: bool = False):
        # For multimask output, during eval we return the single best mask with the dict keys expected by the evaluators, but also return the multimasks output with new keys.
        num_mask_boxes = out["pred_boxes"].size(1)
        if not self.training and multimask_output and num_mask_boxes > 1:
            out["multi_pred_logits"] = out["pred_logits"]
            if "pred_masks" in out:
                out["multi_pred_masks"] = out["pred_masks"]
            out["multi_pred_boxes"] = out["pred_boxes"]
            out["multi_pred_boxes_xyxy"] = out["pred_boxes_xyxy"]

            best_mask_idx = out["pred_logits"].argmax(1).squeeze(1)
            batch_idx = torch.arange(len(best_mask_idx), device=best_mask_idx.device)

            out["pred_logits"] = out["pred_logits"][batch_idx, best_mask_idx].unsqueeze(
                1
            )
            if "pred_masks" in out:
                out["pred_masks"] = out["pred_masks"][
                    batch_idx, best_mask_idx
                ].unsqueeze(1)
            out["pred_boxes"] = out["pred_boxes"][batch_idx, best_mask_idx].unsqueeze(1)
            out["pred_boxes_xyxy"] = out["pred_boxes_xyxy"][
                batch_idx, best_mask_idx
            ].unsqueeze(1)

        return out

    def _get_dummy_prompt(self, num_prompts=1):
        device = self.device
        geometric_prompt = Prompt(
            box_embeddings=torch.zeros(0, num_prompts, 4, device=device),
            box_mask=torch.zeros(num_prompts, 0, device=device, dtype=torch.bool),
        )
        return geometric_prompt

    def forward(self, input: BatchedDatapoint):
        device = self.device
        backbone_out = {"img_batch_all_stages": input.img_batch}
        backbone_out.update(self.backbone.forward_image(input.img_batch))
        num_frames = len(input.find_inputs)
        assert num_frames == 1

        text_outputs = self.backbone.forward_text(input.find_text_batch, device=device)
        backbone_out.update(text_outputs)

        previous_stages_out = SAM3Output(
            iter_mode=SAM3Output.IterMode.LAST_STEP_PER_STAGE
        )

        find_input = input.find_inputs[0]
        find_target = input.find_targets[0]

        if find_input.input_points is not None and find_input.input_points.numel() > 0:
            print("Warning: Point prompts are ignored in PCS.")

        num_interactive_steps = 0 if self.training else self.num_interactive_steps_val
        geometric_prompt = Prompt(
            box_embeddings=find_input.input_boxes,
            box_mask=find_input.input_boxes_mask,
            box_labels=find_input.input_boxes_label,
        )

        # Init vars that are shared across the loop.
        stage_outs = []
        for cur_step in range(num_interactive_steps + 1):
            if cur_step > 0:
                # We sample interactive geometric prompts (boxes, points)
                geometric_prompt, _ = self.interactive_prompt_sampler.sample(
                    geo_prompt=geometric_prompt,
                    find_target=find_target,
                    previous_out=stage_outs[-1],
                )
            out = self.forward_grounding(
                backbone_out=backbone_out,
                find_input=find_input,
                find_target=find_target,
                geometric_prompt=geometric_prompt.clone(),
            )
            stage_outs.append(out)

        previous_stages_out.append(stage_outs)
        return previous_stages_out

    def _compute_matching(self, out, targets):
        out["indices"] = self.matcher(out, targets)
        for aux_out in out.get("aux_outputs", []):
            aux_out["indices"] = self.matcher(aux_out, targets)

    def back_convert(self, targets):
        batched_targets = {
            "boxes": targets.boxes.view(-1, 4),
            "boxes_xyxy": box_cxcywh_to_xyxy(targets.boxes.view(-1, 4)),
            "boxes_padded": targets.boxes_padded,
            "positive_map": targets.boxes.new_ones(len(targets.boxes), 1),
            "num_boxes": targets.num_boxes,
            "masks": targets.segments,
            "semantic_masks": targets.semantic_segments,
            "is_valid_mask": targets.is_valid_segment,
            "is_exhaustive": targets.is_exhaustive,
            "object_ids_packed": targets.object_ids,
            "object_ids_padded": targets.object_ids_padded,
        }
        return batched_targets

    def predict_inst(
        self,
        inference_state,
        **kwargs,
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
        orig_h, orig_w = (
            inference_state["original_height"],
            inference_state["original_width"],
        )
        backbone_out = inference_state["backbone_out"]["sam2_backbone_out"]
        (
            _,
            vision_feats,
            _,
            _,
        ) = self.inst_interactive_predictor.model._prepare_backbone_features(
            backbone_out
        )
        # Add no_mem_embed, which is added to the lowest rest feat. map during training on videos
        vision_feats[-1] = (
            vision_feats[-1] + self.inst_interactive_predictor.model.no_mem_embed
        )
        feats = [
            feat.permute(1, 2, 0).view(1, -1, *feat_size)
            for feat, feat_size in zip(
                vision_feats[::-1], self.inst_interactive_predictor._bb_feat_sizes[::-1]
            )
        ][::-1]
        self.inst_interactive_predictor._features = {
            "image_embed": feats[-1],
            "high_res_feats": feats[:-1],
        }
        self.inst_interactive_predictor._is_image_set = True
        self.inst_interactive_predictor._orig_hw = [(orig_h, orig_w)]
        res = self.inst_interactive_predictor.predict(**kwargs)
        self.inst_interactive_predictor._features = None
        self.inst_interactive_predictor._is_image_set = False
        return res

    def predict_inst_batch(
        self,
        inference_state,
        *args,
        **kwargs,
    ) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]:
        backbone_out = inference_state["backbone_out"]["sam2_backbone_out"]
        (
            _,
            vision_feats,
            _,
            _,
        ) = self.inst_interactive_predictor.model._prepare_backbone_features(
            backbone_out
        )
        # Add no_mem_embed, which is added to the lowest res feat. map during training on videos
        vision_feats[-1] = (
            vision_feats[-1] + self.inst_interactive_predictor.model.no_mem_embed
        )
        batch_size = vision_feats[-1].shape[1]
        orig_heights, orig_widths = (
            inference_state["original_heights"],
            inference_state["original_widths"],
        )
        assert (
            batch_size == len(orig_heights) == len(orig_widths)
        ), f"Batch size mismatch in predict_inst_batch. Got {batch_size}, {len(orig_heights)}, {len(orig_widths)}"
        feats = [
            feat.permute(1, 2, 0).view(batch_size, -1, *feat_size)
            for feat, feat_size in zip(
                vision_feats[::-1], self.inst_interactive_predictor._bb_feat_sizes[::-1]
            )
        ][::-1]
        self.inst_interactive_predictor._features = {
            "image_embed": feats[-1],
            "high_res_feats": feats[:-1],
        }
        self.inst_interactive_predictor._is_image_set = True
        self.inst_interactive_predictor._is_batch = True
        self.inst_interactive_predictor._orig_hw = [
            (orig_h, orig_w) for orig_h, orig_w in zip(orig_heights, orig_widths)
        ]
        res = self.inst_interactive_predictor.predict_batch(*args, **kwargs)
        self.inst_interactive_predictor._features = None
        self.inst_interactive_predictor._is_image_set = False
        self.inst_interactive_predictor._is_batch = False
        return res


class Sam3ImageOnVideoMultiGPU(Sam3Image):
    def __init__(
        self, *args, async_all_gather=True, gather_backbone_out=None, **kwargs
    ):
        super().__init__(*args, **kwargs)
        self.rank = int(os.getenv("RANK", "0"))
        self.world_size = int(os.getenv("WORLD_SIZE", "1"))
        self.async_all_gather = async_all_gather

        # if gather_backbone is not set, default to gathering only for `SAM3VLBackbone`
        if gather_backbone_out is None:
            gather_backbone_out = isinstance(self.backbone, SAM3VLBackbone)
        self.gather_backbone_out = gather_backbone_out

    def forward_video_grounding_multigpu(
        self,
        backbone_out,
        find_inputs,
        geometric_prompt: Prompt,
        frame_idx,
        num_frames,
        # `multigpu_buffer` is a dict to cache detector's outputs in a chunk between different calls
        multigpu_buffer,
        track_in_reverse=False,
        # whether to also return the SAM2 backbone features
        return_sam2_backbone_feats=False,
        # whether to perform NMS and suppress the scores of those detections removed by NMS
        run_nms=False,
        nms_prob_thresh=None,
        nms_iou_thresh=None,
        **kwargs,
    ):
        """
        Compute the detector's detection outputs in a distributed manner, where all GPUs process
        a chunk of frames (equal to the number of GPUs) at once and store them in cache.
        """
        # Step 1: fetch the detector outputs in the current chunk from buffer
        frame_idx_curr_b = frame_idx - frame_idx % self.world_size
        frame_idx_curr_e = min(frame_idx_curr_b + self.world_size, num_frames)
        # in case the current frame's detection results are not in the buffer yet, build the current chunk
        # (this should only happen on the first chunk, since we are also building the next chunk below)
        if frame_idx not in multigpu_buffer:
            with torch.profiler.record_function("build_multigpu_buffer_next_chunk1"):
                self._build_multigpu_buffer_next_chunk(
                    backbone_out=backbone_out,
                    find_inputs=find_inputs,
                    geometric_prompt=geometric_prompt,
                    frame_idx_begin=frame_idx_curr_b,
                    frame_idx_end=frame_idx_curr_e,
                    num_frames=num_frames,
                    multigpu_buffer=multigpu_buffer,
                    run_nms=run_nms,
                    nms_prob_thresh=nms_prob_thresh,
                    nms_iou_thresh=nms_iou_thresh,
                )

        # read out the current frame's results from `multigpu_buffer`
        out = {}
        for k, (v, handle) in multigpu_buffer[frame_idx].items():
            if k.startswith("sam2_backbone_") and not return_sam2_backbone_feats:
                continue
            if handle is not None:
                handle.wait()  # wait for async all-gather to finish
            out[k] = v

        # Step 2: remove detection outputs of the previous chunk from cache to save GPU memory
        if not track_in_reverse and frame_idx_curr_b - self.world_size >= 0:
            frame_idx_prev_e = frame_idx_curr_b
            frame_idx_prev_b = frame_idx_curr_b - self.world_size
        elif track_in_reverse and frame_idx_curr_e < num_frames:
            frame_idx_prev_b = frame_idx_curr_e
            frame_idx_prev_e = min(frame_idx_prev_b + self.world_size, num_frames)
        else:
            frame_idx_prev_b = frame_idx_prev_e = None
        if frame_idx_prev_b is not None:
            for frame_idx_rm in range(frame_idx_prev_b, frame_idx_prev_e):
                multigpu_buffer.pop(frame_idx_rm, None)

        # Step 3: compute and cache detection outputs of the next chunk ahead of time
        # (so that we can overlap computation with all-gather transfer)
        if not track_in_reverse and frame_idx_curr_e < num_frames:
            frame_idx_next_b = frame_idx_curr_e
            frame_idx_next_e = min(frame_idx_next_b + self.world_size, num_frames)
        elif track_in_reverse and frame_idx_curr_b - self.world_size >= 0:
            frame_idx_next_e = frame_idx_curr_b
            frame_idx_next_b = frame_idx_curr_b - self.world_size
        else:
            frame_idx_next_b = frame_idx_next_e = None
        if frame_idx_next_b is not None and frame_idx_next_b not in multigpu_buffer:
            with torch.profiler.record_function("build_multigpu_buffer_next_chunk2"):
                self._build_multigpu_buffer_next_chunk(
                    backbone_out=backbone_out,
                    find_inputs=find_inputs,
                    geometric_prompt=geometric_prompt,
                    frame_idx_begin=frame_idx_next_b,
                    frame_idx_end=frame_idx_next_e,
                    num_frames=num_frames,
                    multigpu_buffer=multigpu_buffer,
                    run_nms=run_nms,
                    nms_prob_thresh=nms_prob_thresh,
                    nms_iou_thresh=nms_iou_thresh,
                )

        return out, backbone_out

    def _build_multigpu_buffer_next_chunk(
        self,
        backbone_out,
        find_inputs,
        geometric_prompt: Prompt,
        frame_idx_begin,
        frame_idx_end,
        num_frames,
        multigpu_buffer,
        run_nms=False,
        nms_prob_thresh=None,
        nms_iou_thresh=None,
    ):
        """Compute detection outputs on a chunk of frames and store their results in multigpu_buffer."""
        # each GPU computes detections on one frame in the chunk (in a round-robin manner)
        frame_idx_local_gpu = min(frame_idx_begin + self.rank, frame_idx_end - 1)
        # `forward_grounding` (from base class `Sam3ImageOnVideo`) runs the detector on a single frame
        with torch.profiler.record_function("forward_grounding"):
            out_local = self.forward_grounding(
                backbone_out=backbone_out,
                find_input=find_inputs[frame_idx_local_gpu],
                find_target=None,
                geometric_prompt=geometric_prompt,
            )
        if run_nms:
            with torch.profiler.record_function("nms_masks"):
                # run NMS as a post-processing step on top of the detection outputs
                assert nms_prob_thresh is not None and nms_iou_thresh is not None
                pred_probs = out_local["pred_logits"].squeeze(-1).sigmoid()
                pred_masks = out_local["pred_masks"]
                # loop over text prompts (not an overhead for demo where there's only 1 prompt)
                for prompt_idx in range(pred_probs.size(0)):
                    keep = nms_masks(
                        pred_probs=pred_probs[prompt_idx],
                        pred_masks=pred_masks[prompt_idx],
                        prob_threshold=nms_prob_thresh,
                        iou_threshold=nms_iou_thresh,
                    )
                    # set a very low threshold for those detections removed by NMS
                    out_local["pred_logits"][prompt_idx, :, 0] -= 1e4 * (~keep).float()

        if self.gather_backbone_out:
            # gather the SAM 2 backbone features across GPUs
            feats = out_local["prev_encoder_out"]["backbone_out"]["sam2_backbone_out"]
            assert len(feats["backbone_fpn"]) == 3  # SAM2 backbone always have 3 levels
            # cast the SAM2 backbone features to bfloat16 for all-gather (this is usually
            # a no-op, SAM2 backbone features are likely already in bfloat16 due to AMP)
            backbone_fpn_bf16 = [x.to(torch.bfloat16) for x in feats["backbone_fpn"]]
            fpn0, fpn_handle0 = self._gather_tensor(backbone_fpn_bf16[0])
            fpn1, fpn_handle1 = self._gather_tensor(backbone_fpn_bf16[1])
            fpn2, fpn_handle2 = self._gather_tensor(backbone_fpn_bf16[2])
            # vision_pos_enc is the same on all frames, so no need to all-gather them
            vision_pos_enc = feats["vision_pos_enc"]

        # trim the detector output to only include the necessary keys
        out_local = {
            "pred_logits": out_local["pred_logits"],
            "pred_boxes": out_local["pred_boxes"],
            "pred_boxes_xyxy": out_local["pred_boxes_xyxy"],
            "pred_masks": out_local["pred_masks"],
        }

        # gather the results: after this step, each GPU will receive detector outputs on
        # all frames in the chunk and store them in `multigpu_buffer`
        out_gathered = {k: self._gather_tensor(v) for k, v in out_local.items()}
        for rank in range(self.world_size):
            frame_idx_to_save = frame_idx_begin + rank
            if frame_idx_to_save >= num_frames:
                continue
            frame_buffer = {
                k: (v[rank], handle) for k, (v, handle) in out_gathered.items()
            }
            if self.gather_backbone_out:
                # also add gathered SAM 2 backbone features to frame_buffer
                frame_buffer["tracker_backbone_fpn_0"] = (fpn0[rank], fpn_handle0)
                frame_buffer["tracker_backbone_fpn_1"] = (fpn1[rank], fpn_handle1)
                frame_buffer["tracker_backbone_fpn_2"] = (fpn2[rank], fpn_handle2)
                frame_buffer["tracker_backbone_pos_enc"] = (vision_pos_enc, None)

            multigpu_buffer[frame_idx_to_save] = frame_buffer

    def _gather_tensor(self, x):
        if self.world_size == 1:
            return [x], None

        async_op = self.async_all_gather
        # here `.contiguous()` is required -- otherwise NCCL all_gather
        # sometimes gives wrong results
        x = x.contiguous()  # ensure contiguous memory for NCCL
        output_list = [torch.empty_like(x) for _ in range(self.world_size)]
        handle = torch.distributed.all_gather(output_list, x, async_op=async_op)
        return output_list, handle