File size: 11,418 Bytes
14114e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved

import math
from typing import Dict, List, Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint

from .model_misc import MLP


class LinearPresenceHead(nn.Sequential):
    def __init__(self, d_model):
        # a hack to make `LinearPresenceHead` compatible with old checkpoints
        super().__init__(nn.Identity(), nn.Identity(), nn.Linear(d_model, 1))

    def forward(self, hs, prompt, prompt_mask):
        return super().forward(hs)


class MaskPredictor(nn.Module):
    def __init__(self, hidden_dim, mask_dim):
        super().__init__()
        self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)

    def forward(self, obj_queries, pixel_embed):
        if len(obj_queries.shape) == 3:
            if pixel_embed.ndim == 3:
                # batch size was omitted
                mask_preds = torch.einsum(
                    "bqc,chw->bqhw", self.mask_embed(obj_queries), pixel_embed
                )
            else:
                mask_preds = torch.einsum(
                    "bqc,bchw->bqhw", self.mask_embed(obj_queries), pixel_embed
                )
        else:
            # Assumed to have aux masks
            if pixel_embed.ndim == 3:
                # batch size was omitted
                mask_preds = torch.einsum(
                    "lbqc,chw->lbqhw", self.mask_embed(obj_queries), pixel_embed
                )
            else:
                mask_preds = torch.einsum(
                    "lbqc,bchw->lbqhw", self.mask_embed(obj_queries), pixel_embed
                )

        return mask_preds


class SegmentationHead(nn.Module):
    def __init__(
        self,
        hidden_dim,
        upsampling_stages,
        use_encoder_inputs=False,
        aux_masks=False,
        no_dec=False,
        pixel_decoder=None,
        act_ckpt=False,
        shared_conv=False,
        compile_mode_pixel_decoder=None,
    ):
        super().__init__()
        self.use_encoder_inputs = use_encoder_inputs
        self.aux_masks = aux_masks
        if pixel_decoder is not None:
            self.pixel_decoder = pixel_decoder
        else:
            self.pixel_decoder = PixelDecoder(
                hidden_dim,
                upsampling_stages,
                shared_conv=shared_conv,
                compile_mode=compile_mode_pixel_decoder,
            )
        self.no_dec = no_dec
        if no_dec:
            self.mask_predictor = nn.Conv2d(
                hidden_dim, 1, kernel_size=3, stride=1, padding=1
            )
        else:
            self.mask_predictor = MaskPredictor(hidden_dim, mask_dim=hidden_dim)

        self.act_ckpt = act_ckpt

        # used to update the output dictionary
        self.instance_keys = ["pred_masks"]

    @property
    def device(self):
        self._device = getattr(self, "_device", None) or next(self.parameters()).device
        return self._device

    def to(self, *args, **kwargs):
        # clear cached _device in case the model is moved to a different device
        self._device = None
        return super().to(*args, **kwargs)

    def _embed_pixels(
        self,
        backbone_feats: List[torch.Tensor],
        image_ids,
        encoder_hidden_states,
    ) -> torch.Tensor:
        feature_device = backbone_feats[0].device  # features could be on CPU
        model_device = self.device
        image_ids_ = image_ids.to(feature_device)
        if self.use_encoder_inputs:
            if backbone_feats[0].shape[0] > 1:
                # For bs > 1, we construct the per query backbone features
                backbone_visual_feats = []
                for feat in backbone_feats:
                    # Copy the img features per query (pixel decoder won't share img feats)
                    backbone_visual_feats.append(feat[image_ids_, ...].to(model_device))
            else:
                # Bs=1, we rely on broadcasting for query-based processing
                backbone_visual_feats = [bb_feat.clone() for bb_feat in backbone_feats]
            # Extract visual embeddings
            encoder_hidden_states = encoder_hidden_states.permute(1, 2, 0)
            spatial_dim = math.prod(backbone_feats[-1].shape[-2:])
            encoder_visual_embed = encoder_hidden_states[..., :spatial_dim].reshape(
                -1, *backbone_feats[-1].shape[1:]
            )

            backbone_visual_feats[-1] = encoder_visual_embed
            if self.act_ckpt:
                pixel_embed = checkpoint.checkpoint(
                    self.pixel_decoder, backbone_visual_feats, use_reentrant=False
                )
            else:
                pixel_embed = self.pixel_decoder(backbone_visual_feats)
        else:
            backbone_feats = [x.to(model_device) for x in backbone_feats]
            pixel_embed = self.pixel_decoder(backbone_feats)
            if pixel_embed.shape[0] == 1:
                # For batch_size=1 training, we can avoid the indexing to save memory
                pixel_embed = pixel_embed.squeeze(0)
            else:
                pixel_embed = pixel_embed[image_ids, ...]
        return pixel_embed

    def forward(
        self,
        backbone_feats: List[torch.Tensor],
        obj_queries: torch.Tensor,
        image_ids,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Dict[str, torch.Tensor]:
        if self.use_encoder_inputs:
            assert encoder_hidden_states is not None

        pixel_embed = self._embed_pixels(
            backbone_feats=backbone_feats,
            image_ids=image_ids,
            encoder_hidden_states=encoder_hidden_states,
        )

        if self.no_dec:
            mask_pred = self.mask_predictor(pixel_embed)
        elif self.aux_masks:
            mask_pred = self.mask_predictor(obj_queries, pixel_embed)
        else:
            mask_pred = self.mask_predictor(obj_queries[-1], pixel_embed)

        return {"pred_masks": mask_pred}


class PixelDecoder(nn.Module):
    def __init__(
        self,
        hidden_dim,
        num_upsampling_stages,
        interpolation_mode="nearest",
        shared_conv=False,
        compile_mode=None,
    ):
        super().__init__()
        self.hidden_dim = hidden_dim
        self.num_upsampling_stages = num_upsampling_stages
        self.interpolation_mode = interpolation_mode
        conv_layers = []
        norms = []
        num_convs = 1 if shared_conv else num_upsampling_stages
        for _ in range(num_convs):
            conv_layers.append(nn.Conv2d(self.hidden_dim, self.hidden_dim, 3, 1, 1))
            norms.append(nn.GroupNorm(8, self.hidden_dim))

        self.conv_layers = nn.ModuleList(conv_layers)
        self.norms = nn.ModuleList(norms)
        self.shared_conv = shared_conv
        self.out_dim = self.conv_layers[-1].out_channels
        if compile_mode is not None:
            self.forward = torch.compile(
                self.forward, mode=compile_mode, dynamic=True, fullgraph=True
            )
            # Needed to make checkpointing happy. But we don't know if the module is checkpointed, so we disable it by default.
            torch._dynamo.config.optimize_ddp = False

    def forward(self, backbone_feats: List[torch.Tensor]):
        # Assumes backbone features are already projected (C == hidden dim)

        prev_fpn = backbone_feats[-1]
        fpn_feats = backbone_feats[:-1]
        for layer_idx, bb_feat in enumerate(fpn_feats[::-1]):
            curr_fpn = bb_feat
            prev_fpn = curr_fpn + F.interpolate(
                prev_fpn, size=curr_fpn.shape[-2:], mode=self.interpolation_mode
            )
            if self.shared_conv:
                # only one conv layer
                layer_idx = 0
            prev_fpn = self.conv_layers[layer_idx](prev_fpn)
            prev_fpn = F.relu(self.norms[layer_idx](prev_fpn))

        return prev_fpn


class UniversalSegmentationHead(SegmentationHead):
    """This module handles semantic+instance segmentation"""

    def __init__(
        self,
        hidden_dim,
        upsampling_stages,
        pixel_decoder,
        aux_masks=False,
        no_dec=False,
        act_ckpt=False,
        presence_head: bool = False,
        dot_product_scorer=None,
        cross_attend_prompt=None,
    ):
        super().__init__(
            hidden_dim=hidden_dim,
            upsampling_stages=upsampling_stages,
            use_encoder_inputs=True,
            aux_masks=aux_masks,
            no_dec=no_dec,
            pixel_decoder=pixel_decoder,
            act_ckpt=act_ckpt,
        )
        self.d_model = hidden_dim

        if dot_product_scorer is not None:
            assert presence_head, "Specifying a dot product scorer without a presence head is likely a mistake"

        self.presence_head = None
        if presence_head:
            self.presence_head = (
                dot_product_scorer
                if dot_product_scorer is not None
                else LinearPresenceHead(self.d_model)
            )

        self.cross_attend_prompt = cross_attend_prompt
        if self.cross_attend_prompt is not None:
            self.cross_attn_norm = nn.LayerNorm(self.d_model)

        self.semantic_seg_head = nn.Conv2d(self.pixel_decoder.out_dim, 1, kernel_size=1)
        self.instance_seg_head = nn.Conv2d(
            self.pixel_decoder.out_dim, self.d_model, kernel_size=1
        )

    def forward(
        self,
        backbone_feats: List[torch.Tensor],
        obj_queries: torch.Tensor,
        image_ids,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        prompt: Optional[torch.Tensor] = None,
        prompt_mask: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Dict[str, Optional[torch.Tensor]]:
        assert encoder_hidden_states is not None
        bs = encoder_hidden_states.shape[1]

        if self.cross_attend_prompt is not None:
            tgt2 = self.cross_attn_norm(encoder_hidden_states)
            tgt2 = self.cross_attend_prompt(
                query=tgt2,
                key=prompt,
                value=prompt,
                key_padding_mask=prompt_mask,
            )[0]
            encoder_hidden_states = tgt2 + encoder_hidden_states

        presence_logit = None
        if self.presence_head is not None:
            pooled_enc = encoder_hidden_states.mean(0)
            presence_logit = (
                self.presence_head(
                    pooled_enc.view(1, bs, 1, self.d_model),
                    prompt=prompt,
                    prompt_mask=prompt_mask,
                )
                .squeeze(0)
                .squeeze(1)
            )

        pixel_embed = self._embed_pixels(
            backbone_feats=backbone_feats,
            image_ids=image_ids,
            encoder_hidden_states=encoder_hidden_states,
        )

        instance_embeds = self.instance_seg_head(pixel_embed)

        if self.no_dec:
            mask_pred = self.mask_predictor(instance_embeds)
        elif self.aux_masks:
            mask_pred = self.mask_predictor(obj_queries, instance_embeds)
        else:
            mask_pred = self.mask_predictor(obj_queries[-1], instance_embeds)

        return {
            "pred_masks": mask_pred,
            "semantic_seg": self.semantic_seg_head(pixel_embed),
            "presence_logit": presence_logit,
        }