Spaces:
Runtime error
Runtime error
File size: 11,418 Bytes
14114e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
import math
from typing import Dict, List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from .model_misc import MLP
class LinearPresenceHead(nn.Sequential):
def __init__(self, d_model):
# a hack to make `LinearPresenceHead` compatible with old checkpoints
super().__init__(nn.Identity(), nn.Identity(), nn.Linear(d_model, 1))
def forward(self, hs, prompt, prompt_mask):
return super().forward(hs)
class MaskPredictor(nn.Module):
def __init__(self, hidden_dim, mask_dim):
super().__init__()
self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
def forward(self, obj_queries, pixel_embed):
if len(obj_queries.shape) == 3:
if pixel_embed.ndim == 3:
# batch size was omitted
mask_preds = torch.einsum(
"bqc,chw->bqhw", self.mask_embed(obj_queries), pixel_embed
)
else:
mask_preds = torch.einsum(
"bqc,bchw->bqhw", self.mask_embed(obj_queries), pixel_embed
)
else:
# Assumed to have aux masks
if pixel_embed.ndim == 3:
# batch size was omitted
mask_preds = torch.einsum(
"lbqc,chw->lbqhw", self.mask_embed(obj_queries), pixel_embed
)
else:
mask_preds = torch.einsum(
"lbqc,bchw->lbqhw", self.mask_embed(obj_queries), pixel_embed
)
return mask_preds
class SegmentationHead(nn.Module):
def __init__(
self,
hidden_dim,
upsampling_stages,
use_encoder_inputs=False,
aux_masks=False,
no_dec=False,
pixel_decoder=None,
act_ckpt=False,
shared_conv=False,
compile_mode_pixel_decoder=None,
):
super().__init__()
self.use_encoder_inputs = use_encoder_inputs
self.aux_masks = aux_masks
if pixel_decoder is not None:
self.pixel_decoder = pixel_decoder
else:
self.pixel_decoder = PixelDecoder(
hidden_dim,
upsampling_stages,
shared_conv=shared_conv,
compile_mode=compile_mode_pixel_decoder,
)
self.no_dec = no_dec
if no_dec:
self.mask_predictor = nn.Conv2d(
hidden_dim, 1, kernel_size=3, stride=1, padding=1
)
else:
self.mask_predictor = MaskPredictor(hidden_dim, mask_dim=hidden_dim)
self.act_ckpt = act_ckpt
# used to update the output dictionary
self.instance_keys = ["pred_masks"]
@property
def device(self):
self._device = getattr(self, "_device", None) or next(self.parameters()).device
return self._device
def to(self, *args, **kwargs):
# clear cached _device in case the model is moved to a different device
self._device = None
return super().to(*args, **kwargs)
def _embed_pixels(
self,
backbone_feats: List[torch.Tensor],
image_ids,
encoder_hidden_states,
) -> torch.Tensor:
feature_device = backbone_feats[0].device # features could be on CPU
model_device = self.device
image_ids_ = image_ids.to(feature_device)
if self.use_encoder_inputs:
if backbone_feats[0].shape[0] > 1:
# For bs > 1, we construct the per query backbone features
backbone_visual_feats = []
for feat in backbone_feats:
# Copy the img features per query (pixel decoder won't share img feats)
backbone_visual_feats.append(feat[image_ids_, ...].to(model_device))
else:
# Bs=1, we rely on broadcasting for query-based processing
backbone_visual_feats = [bb_feat.clone() for bb_feat in backbone_feats]
# Extract visual embeddings
encoder_hidden_states = encoder_hidden_states.permute(1, 2, 0)
spatial_dim = math.prod(backbone_feats[-1].shape[-2:])
encoder_visual_embed = encoder_hidden_states[..., :spatial_dim].reshape(
-1, *backbone_feats[-1].shape[1:]
)
backbone_visual_feats[-1] = encoder_visual_embed
if self.act_ckpt:
pixel_embed = checkpoint.checkpoint(
self.pixel_decoder, backbone_visual_feats, use_reentrant=False
)
else:
pixel_embed = self.pixel_decoder(backbone_visual_feats)
else:
backbone_feats = [x.to(model_device) for x in backbone_feats]
pixel_embed = self.pixel_decoder(backbone_feats)
if pixel_embed.shape[0] == 1:
# For batch_size=1 training, we can avoid the indexing to save memory
pixel_embed = pixel_embed.squeeze(0)
else:
pixel_embed = pixel_embed[image_ids, ...]
return pixel_embed
def forward(
self,
backbone_feats: List[torch.Tensor],
obj_queries: torch.Tensor,
image_ids,
encoder_hidden_states: Optional[torch.Tensor] = None,
**kwargs,
) -> Dict[str, torch.Tensor]:
if self.use_encoder_inputs:
assert encoder_hidden_states is not None
pixel_embed = self._embed_pixels(
backbone_feats=backbone_feats,
image_ids=image_ids,
encoder_hidden_states=encoder_hidden_states,
)
if self.no_dec:
mask_pred = self.mask_predictor(pixel_embed)
elif self.aux_masks:
mask_pred = self.mask_predictor(obj_queries, pixel_embed)
else:
mask_pred = self.mask_predictor(obj_queries[-1], pixel_embed)
return {"pred_masks": mask_pred}
class PixelDecoder(nn.Module):
def __init__(
self,
hidden_dim,
num_upsampling_stages,
interpolation_mode="nearest",
shared_conv=False,
compile_mode=None,
):
super().__init__()
self.hidden_dim = hidden_dim
self.num_upsampling_stages = num_upsampling_stages
self.interpolation_mode = interpolation_mode
conv_layers = []
norms = []
num_convs = 1 if shared_conv else num_upsampling_stages
for _ in range(num_convs):
conv_layers.append(nn.Conv2d(self.hidden_dim, self.hidden_dim, 3, 1, 1))
norms.append(nn.GroupNorm(8, self.hidden_dim))
self.conv_layers = nn.ModuleList(conv_layers)
self.norms = nn.ModuleList(norms)
self.shared_conv = shared_conv
self.out_dim = self.conv_layers[-1].out_channels
if compile_mode is not None:
self.forward = torch.compile(
self.forward, mode=compile_mode, dynamic=True, fullgraph=True
)
# Needed to make checkpointing happy. But we don't know if the module is checkpointed, so we disable it by default.
torch._dynamo.config.optimize_ddp = False
def forward(self, backbone_feats: List[torch.Tensor]):
# Assumes backbone features are already projected (C == hidden dim)
prev_fpn = backbone_feats[-1]
fpn_feats = backbone_feats[:-1]
for layer_idx, bb_feat in enumerate(fpn_feats[::-1]):
curr_fpn = bb_feat
prev_fpn = curr_fpn + F.interpolate(
prev_fpn, size=curr_fpn.shape[-2:], mode=self.interpolation_mode
)
if self.shared_conv:
# only one conv layer
layer_idx = 0
prev_fpn = self.conv_layers[layer_idx](prev_fpn)
prev_fpn = F.relu(self.norms[layer_idx](prev_fpn))
return prev_fpn
class UniversalSegmentationHead(SegmentationHead):
"""This module handles semantic+instance segmentation"""
def __init__(
self,
hidden_dim,
upsampling_stages,
pixel_decoder,
aux_masks=False,
no_dec=False,
act_ckpt=False,
presence_head: bool = False,
dot_product_scorer=None,
cross_attend_prompt=None,
):
super().__init__(
hidden_dim=hidden_dim,
upsampling_stages=upsampling_stages,
use_encoder_inputs=True,
aux_masks=aux_masks,
no_dec=no_dec,
pixel_decoder=pixel_decoder,
act_ckpt=act_ckpt,
)
self.d_model = hidden_dim
if dot_product_scorer is not None:
assert presence_head, "Specifying a dot product scorer without a presence head is likely a mistake"
self.presence_head = None
if presence_head:
self.presence_head = (
dot_product_scorer
if dot_product_scorer is not None
else LinearPresenceHead(self.d_model)
)
self.cross_attend_prompt = cross_attend_prompt
if self.cross_attend_prompt is not None:
self.cross_attn_norm = nn.LayerNorm(self.d_model)
self.semantic_seg_head = nn.Conv2d(self.pixel_decoder.out_dim, 1, kernel_size=1)
self.instance_seg_head = nn.Conv2d(
self.pixel_decoder.out_dim, self.d_model, kernel_size=1
)
def forward(
self,
backbone_feats: List[torch.Tensor],
obj_queries: torch.Tensor,
image_ids,
encoder_hidden_states: Optional[torch.Tensor] = None,
prompt: Optional[torch.Tensor] = None,
prompt_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Dict[str, Optional[torch.Tensor]]:
assert encoder_hidden_states is not None
bs = encoder_hidden_states.shape[1]
if self.cross_attend_prompt is not None:
tgt2 = self.cross_attn_norm(encoder_hidden_states)
tgt2 = self.cross_attend_prompt(
query=tgt2,
key=prompt,
value=prompt,
key_padding_mask=prompt_mask,
)[0]
encoder_hidden_states = tgt2 + encoder_hidden_states
presence_logit = None
if self.presence_head is not None:
pooled_enc = encoder_hidden_states.mean(0)
presence_logit = (
self.presence_head(
pooled_enc.view(1, bs, 1, self.d_model),
prompt=prompt,
prompt_mask=prompt_mask,
)
.squeeze(0)
.squeeze(1)
)
pixel_embed = self._embed_pixels(
backbone_feats=backbone_feats,
image_ids=image_ids,
encoder_hidden_states=encoder_hidden_states,
)
instance_embeds = self.instance_seg_head(pixel_embed)
if self.no_dec:
mask_pred = self.mask_predictor(instance_embeds)
elif self.aux_masks:
mask_pred = self.mask_predictor(obj_queries, instance_embeds)
else:
mask_pred = self.mask_predictor(obj_queries[-1], instance_embeds)
return {
"pred_masks": mask_pred,
"semantic_seg": self.semantic_seg_head(pixel_embed),
"presence_logit": presence_logit,
}
|