File size: 7,154 Bytes
14114e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
import json
import os
from collections import defaultdict

from tqdm import tqdm


def convert_ytbvis_to_cocovid_gt(ann_json, save_path=None):
    """Convert YouTube VIS dataset to COCO-style video instance segmentation format.

    Args:
        ann_json (str): Path to YouTube VIS annotation JSON file
        save_path (str): path to save converted COCO-style JSON
    """
    # Initialize COCO structure
    VIS = {
        "info": {},
        "images": [],
        "videos": [],
        "tracks": [],
        "annotations": [],
        "categories": [],
        "licenses": [],
    }

    # Load original annotations
    official_anns = json.load(open(ann_json))
    VIS["categories"] = official_anns["categories"]  # Direct copy categories

    # Initialize counters
    records = dict(img_id=1, ann_id=1)

    # Create video-to-annotations mapping
    vid_to_anns = defaultdict(list)
    for ann in official_anns["annotations"]:
        vid_to_anns[ann["video_id"]].append(ann)

    # Create tracks directly
    VIS["tracks"] = [
        {
            "id": ann["id"],
            "category_id": ann["category_id"],
            "video_id": ann["video_id"],
        }
        for ann in official_anns["annotations"]
    ]

    # Process videos
    for video_info in tqdm(official_anns["videos"]):
        # Create video entry
        video = {
            "id": video_info["id"],
            "name": os.path.dirname(video_info["file_names"][0]),
            "width": video_info["width"],
            "height": video_info["height"],
            "length": video_info["length"],
            "neg_category_ids": [],
            "not_exhaustive_category_ids": [],
        }
        VIS["videos"].append(video)

        # Process frames
        num_frames = len(video_info["file_names"])
        for frame_idx in range(num_frames):
            # Create image entry
            image = {
                "id": records["img_id"],
                "video_id": video_info["id"],
                "file_name": video_info["file_names"][frame_idx],
                "width": video_info["width"],
                "height": video_info["height"],
                "frame_index": frame_idx,
                "frame_id": frame_idx,
            }
            VIS["images"].append(image)

            # Process annotations for this frame
            if video_info["id"] in vid_to_anns:
                for ann in vid_to_anns[video_info["id"]]:
                    bbox = ann["bboxes"][frame_idx]
                    if bbox is None:
                        continue

                    # Create annotation entry
                    annotation = {
                        "id": records["ann_id"],
                        "video_id": video_info["id"],
                        "image_id": records["img_id"],
                        "track_id": ann["id"],
                        "category_id": ann["category_id"],
                        "bbox": bbox,
                        "area": ann["areas"][frame_idx],
                        "segmentation": ann["segmentations"][frame_idx],
                        "iscrowd": ann["iscrowd"],
                    }
                    VIS["annotations"].append(annotation)
                    records["ann_id"] += 1

            records["img_id"] += 1

    # Print summary
    print(f"Converted {len(VIS['videos'])} videos")
    print(f"Converted {len(VIS['images'])} images")
    print(f"Created {len(VIS['tracks'])} tracks")
    print(f"Created {len(VIS['annotations'])} annotations")

    if save_path is None:
        return VIS

    # Save output
    save_dir = os.path.dirname(save_path)
    os.makedirs(save_dir, exist_ok=True)
    json.dump(VIS, open(save_path, "w"))

    return VIS


def convert_ytbvis_to_cocovid_pred(
    youtubevis_pred_path: str, converted_dataset_path: str, output_path: str
) -> None:
    """
    Convert YouTubeVIS predictions to COCO format with video_id preservation

    Args:
        youtubevis_pred_path: Path to YouTubeVIS prediction JSON
        converted_dataset_path: Path to converted COCO dataset JSON
        output_path: Path to save COCO format predictions
    """

    # Load YouTubeVIS predictions
    with open(youtubevis_pred_path) as f:
        ytv_predictions = json.load(f)

    # Load converted dataset for image ID mapping
    with open(converted_dataset_path) as f:
        coco_dataset = json.load(f)

    # Create (video_id, frame_idx) -> image_id mapping
    image_id_map = {
        (img["video_id"], img["frame_index"]): img["id"]
        for img in coco_dataset["images"]
    }

    coco_annotations = []
    track_id_counter = 1  # Unique track ID generator

    for pred in tqdm(ytv_predictions):
        video_id = pred["video_id"]
        category_id = pred["category_id"]
        bboxes = pred["bboxes"]
        segmentations = pred.get("segmentations", [])  # Get segmentations if available
        areas = pred.get("areas", [])  # Get areas if available
        score = pred["score"]

        # Assign unique track ID for this prediction
        track_id = track_id_counter
        track_id_counter += 1

        # Ensure segmentations and areas have the same length as bboxes
        if len(segmentations) == 0:
            segmentations = [None] * len(bboxes)
        if len(areas) == 0:
            areas = [None] * len(bboxes)

        for frame_idx, (bbox, segmentation, area_from_pred) in enumerate(
            zip(bboxes, segmentations, areas)
        ):
            # Skip frames with missing objects (None or zero bbox)
            if bbox is None or all(x == 0 for x in bbox):
                continue

            # Get corresponding image ID from mapping
            image_id = image_id_map.get((video_id, frame_idx))
            if image_id is None:
                raise RuntimeError(
                    f"prediction {video_id=}, {frame_idx=} does not match any images in the converted COCO format"
                )

            # Extract bbox coordinates
            x, y, w, h = bbox

            # Calculate area - use area from prediction if available, otherwise from bbox
            if area_from_pred is not None and area_from_pred > 0:
                area = area_from_pred
            else:
                area = w * h

            # Create COCO annotation with video_id
            coco_annotation = {
                "image_id": int(image_id),
                "video_id": video_id,  # Added video_id field
                "track_id": track_id,
                "category_id": category_id,
                "bbox": [float(x), float(y), float(w), float(h)],
                "area": float(area),
                "iscrowd": 0,
                "score": float(score),
            }

            # Add segmentation if available
            if segmentation is not None:
                coco_annotation["segmentation"] = segmentation

            coco_annotations.append(coco_annotation)

    # Save output
    with open(output_path, "w") as f:
        json.dump(coco_annotations, f)

    print(f"Converted {len(coco_annotations)} predictions to COCO format with video_id")