Spaces:
Runtime error
Runtime error
File size: 36,243 Bytes
14114e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 |
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
"""
COCO evaluator that works in distributed mode.
Mostly copy-paste from https://github.com/pytorch/vision/blob/edfd5a7/references/detection/coco_eval.py
The difference is that there is less copy-pasting from pycocotools
in the end of the file, as python3 can suppress prints with contextlib
"""
import contextlib
import copy
import json
import logging
import os
import pickle
from collections import defaultdict
from pathlib import Path
from typing import Any, List, Optional
import numpy as np
import pycocotools.mask as mask_utils
import torch
from iopath.common.file_io import g_pathmgr
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from sam3.train.masks_ops import rle_encode
from sam3.train.utils.distributed import (
all_gather,
gather_to_rank_0_via_filesys,
get_rank,
is_main_process,
)
RARITY_BUCKETS = {0: "frequent", 1: "common", 2: "medium", 3: "rare"}
class CocoEvaluator:
def __init__(
self,
coco_gt,
iou_types: List[str],
useCats: bool,
dump_dir: Optional[str],
postprocessor,
average_by_rarity=False,
metrics_dump_dir: Optional[str] = None,
gather_pred_via_filesys=False,
use_normalized_areas=True,
maxdets=[1, 10, 100],
exhaustive_only=False,
all_exhaustive_only=True,
):
"""Online coco evaluator. It will evaluate images as they are generated by the model, then accumulate/summarize at the end
Args:
- coco_gt: COCO api object containing the gt
- iou_types: can be either "bbox" or "segm"
- useCats: If true, categories will be used for evaluation
- dump_dir: if non null, then the predictions will be dumped in that directory
- postprocessor: Module to convert the model's output into the coco format
- average_by_rarity: if true then we expect the images information in the gt dataset
to have a "rarity" field. Then the AP will be computed on all rarity buckets
individually, then averaged
- gather_pred_via_filesys: if true, we use the filesystem for collective gathers
- use_normalized_areas: if true, the areas of the objects in the GT are assumed to be
normalized by the area of the image. In that case, the size buckets are adjusted
- maxdets: maximal number of detections to be evaluated on each image.
- exhaustive_only: If true, we restrict eval only to exhaustive annotations
- all_exhaustive_only: If true, datapoints are restricted only to those with all exhaustive annotations
"""
# coco_gt = copy.deepcopy(coco_gt)
self.coco_gts = [coco_gt] if not isinstance(coco_gt, list) else coco_gt
assert len(maxdets) == 3, f"expecting 3 detection threshold, got {len(maxdets)}"
self.use_normalized_areas = use_normalized_areas
self.iou_types = iou_types
self.useCats = useCats
self.maxdets = maxdets
self.dump = None
self.dump_dir = dump_dir
if self.dump_dir is not None:
self.dump = []
if is_main_process():
if not os.path.exists(self.dump_dir):
os.makedirs(self.dump_dir, exist_ok=True)
logging.info(f"Create the folder: {dump_dir}")
self.initialized = False
# Whether to gather predictions through filesystem (instead of torch
# collective ops; requiring a shared filesystem across all ranks)
self.gather_pred_via_filesys = gather_pred_via_filesys
self.use_self_evaluate = True # CPP version is disabled
self.postprocessor = postprocessor
self.average_by_rarity = average_by_rarity
self.exhaustive_only = exhaustive_only
self.all_exhaustive_only = all_exhaustive_only
self.metrics_dump_dir = metrics_dump_dir
if self.metrics_dump_dir is not None:
if is_main_process():
if not os.path.exists(self.metrics_dump_dir):
os.makedirs(self.metrics_dump_dir, exist_ok=True)
logging.info(f"Create the folder: {metrics_dump_dir}")
def _lazy_init(self, coco_cls=COCO):
if self.initialized:
return
self.initialized = True
self.coco_gts = [
coco_cls(g_pathmgr.get_local_path(gt)) if isinstance(gt, str) else gt
for gt in self.coco_gts
]
self.reset()
self.eval_img_ids = None
if self.exhaustive_only:
exclude_img_ids = set()
# exclude_img_ids are the ids that are not exhaustively annotated in any of the other gts
if self.all_exhaustive_only:
for coco_gt in self.coco_gts[1:]:
exclude_img_ids = exclude_img_ids.union(
{
img["id"]
for img in coco_gt.dataset["images"]
if not img["is_instance_exhaustive"]
}
)
# we only eval on instance exhaustive queries
self.eval_img_ids = [
img["id"]
for img in self.coco_gts[0].dataset["images"]
if (img["is_instance_exhaustive"] and img["id"] not in exclude_img_ids)
]
self.rarity_buckets = None
if self.average_by_rarity:
self.rarity_buckets = defaultdict(list)
eval_img_ids_set = (
set(self.eval_img_ids) if self.eval_img_ids is not None else None
)
for img in self.coco_gts[0].dataset["images"]:
if self.eval_img_ids is not None and img["id"] not in eval_img_ids_set:
continue
self.rarity_buckets[img["rarity"]].append(img["id"])
print("Rarity buckets sizes:")
for k, v in self.rarity_buckets.items():
print(f"{k}: {len(v)}")
def set_sync_device(self, device: torch.device) -> Any:
self._sync_device = device
def _evaluate(self, *args, **kwargs):
return evaluate(*args, **kwargs)
def _loadRes(self, *args, **kwargs):
return loadRes(*args, **kwargs)
def update(self, *args, **kwargs):
self._lazy_init()
predictions = self.postprocessor.process_results(*args, **kwargs)
img_ids = list(np.unique(list(predictions.keys())))
self.img_ids.extend(img_ids)
for iou_type in self.iou_types:
results = self.prepare(predictions, iou_type)
self._dump(results)
assert len(self.coco_gts) == len(self.coco_evals)
all_scorings = []
for cur_coco_gt, cur_coco_eval in zip(self.coco_gts, self.coco_evals):
# suppress pycocotools prints
with open(os.devnull, "w") as devnull:
with contextlib.redirect_stdout(devnull):
coco_dt = (
self._loadRes(cur_coco_gt, results) if results else COCO()
)
coco_eval = cur_coco_eval[iou_type]
coco_eval.cocoDt = coco_dt
coco_eval.params.imgIds = list(img_ids)
coco_eval.params.useCats = self.useCats
coco_eval.params.maxDets = self.maxdets
img_ids, eval_imgs = self._evaluate(coco_eval, self.use_self_evaluate)
all_scorings.append(eval_imgs)
selected = self.select_best_scoring(all_scorings)
self.eval_imgs[iou_type].append(selected)
def select_best_scoring(self, scorings):
# This function is used for "oracle" type evaluation.
# It accepts the evaluation results with respect to several ground truths, and picks the best
if len(scorings) == 1:
return scorings[0]
# Currently we don't support Oracle Phrase AP.
# To implement it, we likely need to modify the cpp code since the eval_image type is opaque
raise RuntimeError("Not implemented")
def _dump(self, results):
if self.dump is not None:
dumped_results = copy.deepcopy(results)
for r in dumped_results:
if "bbox" not in self.iou_types and "bbox" in r:
del r["bbox"]
elif "bbox" in r:
r["bbox"] = [round(coord, 5) for coord in r["bbox"]]
r["score"] = round(r["score"], 5)
self.dump.extend(dumped_results)
def synchronize_between_processes(self):
self._lazy_init()
logging.info("Coco evaluator: Synchronizing between processes")
for iou_type in self.iou_types:
if len(self.eval_imgs[iou_type]) > 0:
self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
else:
num_areas = len(self.coco_evals[0][iou_type].params.areaRng)
# assuming 1 class
assert not self.useCats
self.eval_imgs[iou_type] = np.empty((1, num_areas, 0))
create_common_coco_eval(
self.coco_evals[0][iou_type],
self.img_ids,
self.eval_imgs[iou_type],
use_self_evaluate=self.use_self_evaluate,
gather_pred_via_filesys=self.gather_pred_via_filesys,
metrics_dump_dir=self.metrics_dump_dir,
)
if self.dump is not None:
dumped_file = Path(self.dump_dir) / f"coco_predictions_{get_rank()}.json"
logging.info(f"COCO evaluator: Dumping local predictions to {dumped_file}")
with g_pathmgr.open(str(dumped_file), "w") as f:
json.dump(self.dump, f)
# if self.gather_pred_via_filesys:
# dump = gather_to_rank_0_via_filesys(self.dump)
# else:
# dump = all_gather(self.dump, force_cpu=True)
# self.dump = sum(dump, [])
def accumulate(self, imgIds=None):
self._lazy_init()
logging.info(
f"Coco evaluator: Accumulating on {len(imgIds) if imgIds is not None else 'all'} images"
)
if not is_main_process():
return
if imgIds is None:
for coco_eval in self.coco_evals[0].values():
accumulate(coco_eval, use_self_eval=self.use_self_evaluate)
if imgIds is not None:
imgIds = set(imgIds)
for coco_eval in self.coco_evals[0].values():
p = coco_eval.params
id_mask = np.array([(i in imgIds) for i in p.imgIds], dtype=bool)
old_img_ids = p.imgIds
coco_eval.params.imgIds = np.asarray(p.imgIds)[id_mask]
old_img_evals = coco_eval.evalImgs
catIds = p.catIds if p.useCats else [-1]
coco_eval.evalImgs = list(
np.asarray(coco_eval.evalImgs)
.reshape(len(catIds), len(p.areaRng), len(old_img_ids))[
..., id_mask
]
.flatten()
)
accumulate(coco_eval, use_self_eval=self.use_self_evaluate)
coco_eval.evalImgs = old_img_evals
coco_eval.params.imgIds = old_img_ids
def summarize(self):
self._lazy_init()
logging.info("Coco evaluator: Summarizing")
if not is_main_process():
return {}
outs = {}
if self.rarity_buckets is None:
self.accumulate(self.eval_img_ids)
for iou_type, coco_eval in self.coco_evals[0].items():
print("IoU metric: {}".format(iou_type))
summarize(coco_eval)
if "bbox" in self.coco_evals[0]:
for key, value in zip(*self.coco_evals[0]["bbox"].stats):
outs[f"coco_eval_bbox_{key}"] = value
if "segm" in self.coco_evals[0]:
for key, value in zip(*self.coco_evals[0]["segm"].stats):
outs[f"coco_eval_masks_{key}"] = value
else:
total_stats = {}
all_keys = {}
for bucket, img_list in self.rarity_buckets.items():
self.accumulate(imgIds=img_list)
bucket_name = RARITY_BUCKETS[bucket]
for iou_type, coco_eval in self.coco_evals[0].items():
print(f"IoU metric: {iou_type}. Rarity bucket: {bucket_name}")
summarize(coco_eval)
if "bbox" in self.coco_evals[0]:
if "bbox" not in total_stats:
total_stats["bbox"] = np.zeros_like(
self.coco_evals[0]["bbox"].stats[1]
)
all_keys["bbox"] = self.coco_evals[0]["bbox"].stats[0]
total_stats["bbox"] += self.coco_evals[0]["bbox"].stats[1]
for key, value in zip(*self.coco_evals[0]["bbox"].stats):
outs[f"coco_eval_bbox_{bucket_name}_{key}"] = value
if "segm" in self.coco_evals[0]:
if "segm" not in total_stats:
total_stats["segm"] = np.zeros_like(
self.coco_evals[0]["segm"].stats[1]
)
all_keys["segm"] = self.coco_evals[0]["segm"].stats[0]
total_stats["segm"] += self.coco_evals[0]["segm"].stats[1]
for key, value in zip(*self.coco_evals[0]["segm"].stats):
outs[f"coco_eval_masks_{bucket_name}_{key}"] = value
if "bbox" in total_stats:
total_stats["bbox"] /= len(self.rarity_buckets)
for key, value in zip(all_keys["bbox"], total_stats["bbox"]):
outs[f"coco_eval_bbox_{key}"] = value
if "segm" in total_stats:
total_stats["segm"] /= len(self.rarity_buckets)
for key, value in zip(all_keys["segm"], total_stats["segm"]):
outs[f"coco_eval_masks_{key}"] = value
# if self.dump is not None:
# assert self.dump_dir is not None
# logging.info("Coco evaluator: Dumping the global result file to disk")
# with g_pathmgr.open(str(Path(self.dump_dir) / "coco_eval.json"), "w") as f:
# json.dump(self.dump, f)
return outs
def compute_synced(self):
self._lazy_init()
self.synchronize_between_processes()
return self.summarize()
def compute(self):
self._lazy_init()
return {"": 0.0}
def reset(self, cocoeval_cls=COCOeval):
self.coco_evals = [{} for _ in range(len(self.coco_gts))]
for i, coco_gt in enumerate(self.coco_gts):
for iou_type in self.iou_types:
self.coco_evals[i][iou_type] = cocoeval_cls(coco_gt, iouType=iou_type)
self.coco_evals[i][iou_type].params.useCats = self.useCats
self.coco_evals[i][iou_type].params.maxDets = self.maxdets
if self.use_normalized_areas:
self.coco_evals[i][iou_type].params.areaRng = [
[0, 1e5],
[0, 0.001],
[0.001, 0.01],
[0.01, 0.1],
[0.1, 0.5],
[0.5, 0.95],
[0.95, 1e5],
]
self.coco_evals[i][iou_type].params.areaRngLbl = [
"all",
"tiny",
"small",
"medium",
"large",
"huge",
"whole_image",
]
self.img_ids = []
self.eval_imgs = {k: [] for k in self.iou_types}
if self.dump is not None:
self.dump = []
def write(self, stats):
self._lazy_init()
"""Write the results in the stats dict"""
if "bbox" in self.coco_evals[0]:
stats["coco_eval_bbox"] = self.coco_evals[0]["bbox"].stats.tolist()
if "segm" in self.coco_evals[0]:
stats["coco_eval_masks"] = self.coco_evals[0]["segm"].stats.tolist()
return stats
def prepare(self, predictions, iou_type):
self._lazy_init()
if iou_type == "bbox":
return self.prepare_for_coco_detection(predictions)
elif iou_type == "segm":
return self.prepare_for_coco_segmentation(predictions)
elif iou_type == "keypoints":
return self.prepare_for_coco_keypoint(predictions)
else:
raise ValueError("Unknown iou type {}".format(iou_type))
def prepare_for_coco_detection(self, predictions):
self._lazy_init()
coco_results = []
for original_id, prediction in predictions.items():
if len(prediction) == 0:
continue
boxes = prediction["boxes"]
boxes = convert_to_xywh(boxes).tolist()
scores = prediction["scores"].tolist()
labels = prediction["labels"].tolist()
coco_results.extend(
[
{
"image_id": original_id,
"category_id": labels[k],
"bbox": box,
"score": scores[k],
}
for k, box in enumerate(boxes)
]
)
return coco_results
@torch.no_grad()
def prepare_for_coco_segmentation(self, predictions):
self._lazy_init()
coco_results = []
for original_id, prediction in predictions.items():
if len(prediction) == 0:
continue
scores = prediction["scores"].tolist()
labels = prediction["labels"].tolist()
boundaries, dilated_boundaries = None, None
if "boundaries" in prediction:
boundaries = prediction["boundaries"]
dilated_boundaries = prediction["dilated_boundaries"]
assert dilated_boundaries is not None
assert len(scores) == len(boundaries)
if "masks_rle" in prediction:
rles = prediction["masks_rle"]
areas = []
for rle in rles:
cur_area = mask_utils.area(rle)
h, w = rle["size"]
areas.append(cur_area / (h * w))
else:
masks = prediction["masks"]
masks = masks > 0.5
h, w = masks.shape[-2:]
areas = masks.flatten(1).sum(1) / (h * w)
areas = areas.tolist()
rles = rle_encode(masks.squeeze(1))
# memory clean
del masks
del prediction["masks"]
assert len(areas) == len(rles) == len(scores)
for k, rle in enumerate(rles):
payload = {
"image_id": original_id,
"category_id": labels[k],
"segmentation": rle,
"score": scores[k],
"area": areas[k],
}
if boundaries is not None:
payload["boundary"] = boundaries[k]
payload["dilated_boundary"] = dilated_boundaries[k]
coco_results.append(payload)
return coco_results
def prepare_for_coco_keypoint(self, predictions):
self._lazy_init()
coco_results = []
for original_id, prediction in predictions.items():
if len(prediction) == 0:
continue
boxes = prediction["boxes"]
boxes = convert_to_xywh(boxes).tolist()
scores = prediction["scores"].tolist()
labels = prediction["labels"].tolist()
keypoints = prediction["keypoints"]
keypoints = keypoints.flatten(start_dim=1).tolist()
coco_results.extend(
[
{
"image_id": original_id,
"category_id": labels[k],
"keypoints": keypoint,
"score": scores[k],
}
for k, keypoint in enumerate(keypoints)
]
)
return coco_results
def convert_to_xywh(boxes):
xmin, ymin, xmax, ymax = boxes.unbind(-1)
return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=-1)
def merge(img_ids, eval_imgs, gather_pred_via_filesys=False):
if gather_pred_via_filesys:
# only gather the predictions to rank 0 (other ranks will receive empty
# lists for `all_img_ids` and `all_eval_imgs`, which should be OK as
# merging and evaluation are only done on rank 0)
all_img_ids = gather_to_rank_0_via_filesys(img_ids)
all_eval_imgs = gather_to_rank_0_via_filesys(eval_imgs)
else:
all_img_ids = all_gather(img_ids, force_cpu=True)
all_eval_imgs = all_gather(eval_imgs, force_cpu=True)
if not is_main_process():
return None, None
merged_img_ids = []
for p in all_img_ids:
merged_img_ids.extend(p)
merged_eval_imgs = []
for p in all_eval_imgs:
merged_eval_imgs.append(p)
merged_img_ids = np.array(merged_img_ids)
merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)
# keep only unique (and in sorted order) images
merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
merged_eval_imgs = merged_eval_imgs[..., idx]
return merged_img_ids, merged_eval_imgs
def create_common_coco_eval(
coco_eval,
img_ids,
eval_imgs,
use_self_evaluate,
gather_pred_via_filesys=False,
metrics_dump_dir=None,
):
img_ids, eval_imgs = merge(img_ids, eval_imgs, gather_pred_via_filesys)
if not is_main_process():
return
if metrics_dump_dir is not None:
dumped_file = (
Path(metrics_dump_dir) / f"coco_eval_img_metrics_{get_rank()}.json"
)
logging.info(f"COCO evaluator: Dumping local predictions to {dumped_file}")
with g_pathmgr.open(str(dumped_file), "w") as f:
json.dump(eval_imgs.squeeze(), f, default=lambda x: x.tolist())
img_ids = list(img_ids)
# If some images were not predicted, we need to create dummy detections for them
missing_img_ids = set(coco_eval.cocoGt.getImgIds()) - set(img_ids)
if len(missing_img_ids) > 0:
print(f"WARNING: {len(missing_img_ids)} images were not predicted!")
coco_eval.cocoDt = COCO()
coco_eval.params.imgIds = list(missing_img_ids)
new_img_ids, new_eval_imgs = evaluate(coco_eval, use_self_evaluate)
img_ids.extend(new_img_ids)
eval_imgs = np.concatenate((eval_imgs, new_eval_imgs), axis=2)
eval_imgs = list(eval_imgs.flatten())
assert len(img_ids) == len(coco_eval.cocoGt.getImgIds())
coco_eval.evalImgs = eval_imgs
coco_eval.params.imgIds = img_ids
coco_eval._paramsEval = copy.deepcopy(coco_eval.params)
#################################################################
# From pycocotools, just removed the prints and fixed
# a Python3 bug about unicode not defined
#################################################################
# Copy of COCO prepare, but doesn't convert anntoRLE
def segmentation_prepare(self):
"""
Prepare ._gts and ._dts for evaluation based on params
:return: None
"""
p = self.params
if p.useCats:
gts = self.cocoGt.loadAnns(
self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)
)
dts = self.cocoDt.loadAnns(
self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)
)
else:
gts = self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds))
dts = self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds))
for gt in gts:
gt["ignore"] = gt["ignore"] if "ignore" in gt else 0
gt["ignore"] = "iscrowd" in gt and gt["iscrowd"]
if p.iouType == "keypoints":
gt["ignore"] = (gt["num_keypoints"] == 0) or gt["ignore"]
self._gts = defaultdict(list) # gt for evaluation
self._dts = defaultdict(list) # dt for evaluation
for gt in gts:
self._gts[gt["image_id"], gt["category_id"]].append(gt)
for dt in dts:
self._dts[dt["image_id"], dt["category_id"]].append(dt)
self.evalImgs = defaultdict(list) # per-image per-category evaluation results
self.eval = {} # accumulated evaluation results
def evaluate(self, use_self_evaluate):
"""
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
:return: None
"""
# tic = time.time()
# print('Running per image evaluation...', use_self_evaluate)
p = self.params
# add backward compatibility if useSegm is specified in params
if p.useSegm is not None:
p.iouType = "segm" if p.useSegm == 1 else "bbox"
print(
"useSegm (deprecated) is not None. Running {} evaluation".format(p.iouType)
)
# print('Evaluate annotation type *{}*'.format(p.iouType))
p.imgIds = list(np.unique(p.imgIds))
if p.useCats:
p.catIds = list(np.unique(p.catIds))
p.maxDets = sorted(p.maxDets)
self.params = p
self._prepare()
# loop through images, area range, max detection number
catIds = p.catIds if p.useCats else [-1]
if p.iouType == "segm" or p.iouType == "bbox":
computeIoU = self.computeIoU
elif p.iouType == "keypoints":
computeIoU = self.computeOks
self.ious = {
(imgId, catId): computeIoU(imgId, catId)
for imgId in p.imgIds
for catId in catIds
}
maxDet = p.maxDets[-1]
if use_self_evaluate:
evalImgs = [
self.evaluateImg(imgId, catId, areaRng, maxDet)
for catId in catIds
for areaRng in p.areaRng
for imgId in p.imgIds
]
# this is NOT in the pycocotools code, but could be done outside
evalImgs = np.asarray(evalImgs).reshape(
len(catIds), len(p.areaRng), len(p.imgIds)
)
return p.imgIds, evalImgs
# <<<< Beginning of code differences with original COCO API
# def convert_instances_to_cpp(instances, is_det=False):
# # Convert annotations for a list of instances in an image to a format that's fast
# # to access in C++
# instances_cpp = []
# for instance in instances:
# instance_cpp = _CPP.InstanceAnnotation(
# int(instance["id"]),
# instance["score"] if is_det else instance.get("score", 0.0),
# instance["area"],
# bool(instance.get("iscrowd", 0)),
# bool(instance.get("ignore", 0)),
# )
# instances_cpp.append(instance_cpp)
# return instances_cpp
# # Convert GT annotations, detections, and IOUs to a format that's fast to access in C++
# ground_truth_instances = [
# [convert_instances_to_cpp(self._gts[imgId, catId]) for catId in p.catIds]
# for imgId in p.imgIds
# ]
# detected_instances = [
# [
# convert_instances_to_cpp(self._dts[imgId, catId], is_det=True)
# for catId in p.catIds
# ]
# for imgId in p.imgIds
# ]
# ious = [[self.ious[imgId, catId] for catId in catIds] for imgId in p.imgIds]
# if not p.useCats:
# # For each image, flatten per-category lists into a single list
# ground_truth_instances = [
# [[o for c in i for o in c]] for i in ground_truth_instances
# ]
# detected_instances = [[[o for c in i for o in c]] for i in detected_instances]
# # Call C++ implementation of self.evaluateImgs()
# _evalImgs_cpp = _CPP.COCOevalEvaluateImages(
# p.areaRng, maxDet, p.iouThrs, ious, ground_truth_instances, detected_instances
# )
# self._paramsEval = copy.deepcopy(self.params)
# evalImgs = np.asarray(_evalImgs_cpp).reshape(
# len(catIds), len(p.areaRng), len(p.imgIds)
# )
# return p.imgIds, evalImgs
#################################################################
# end of straight copy from pycocotools, just removing the prints
#################################################################
#################################################################
# From pycocotools, but disabled mask->box conversion which is
# pointless
#################################################################
def loadRes(self, resFile):
"""
Load result file and return a result api object.
:param resFile (str) : file name of result file
:return: res (obj) : result api object
"""
res = COCO()
res.dataset["images"] = [img for img in self.dataset["images"]]
if type(resFile) == str:
anns = json.load(open(resFile))
elif type(resFile) == np.ndarray:
anns = self.loadNumpyAnnotations(resFile)
else:
anns = resFile
assert type(anns) == list, "results in not an array of objects"
annsImgIds = [ann["image_id"] for ann in anns]
assert set(annsImgIds) == (
set(annsImgIds) & set(self.getImgIds())
), "Results do not correspond to current coco set"
if "caption" in anns[0]:
imgIds = set([img["id"] for img in res.dataset["images"]]) & set(
[ann["image_id"] for ann in anns]
)
res.dataset["images"] = [
img for img in res.dataset["images"] if img["id"] in imgIds
]
for id, ann in enumerate(anns):
ann["id"] = id + 1
elif "bbox" in anns[0] and not anns[0]["bbox"] == []:
res.dataset["categories"] = copy.deepcopy(self.dataset["categories"])
for id, ann in enumerate(anns):
bb = ann["bbox"]
x1, x2, y1, y2 = [bb[0], bb[0] + bb[2], bb[1], bb[1] + bb[3]]
if "segmentation" not in ann:
ann["segmentation"] = [[x1, y1, x1, y2, x2, y2, x2, y1]]
ann["area"] = bb[2] * bb[3]
ann["id"] = id + 1
ann["iscrowd"] = 0
elif "segmentation" in anns[0]:
res.dataset["categories"] = copy.deepcopy(self.dataset["categories"])
for id, ann in enumerate(anns):
# now only support compressed RLE format as segmentation results
# ann["area"] = mask_util.area(ann["segmentation"])
# The following lines are disabled because they are pointless
# if not 'bbox' in ann:
# ann['bbox'] = maskUtils.toBbox(ann['segmentation'])
ann["id"] = id + 1
ann["iscrowd"] = 0
elif "keypoints" in anns[0]:
res.dataset["categories"] = copy.deepcopy(self.dataset["categories"])
for id, ann in enumerate(anns):
s = ann["keypoints"]
x = s[0::3]
y = s[1::3]
x0, x1, y0, y1 = np.min(x), np.max(x), np.min(y), np.max(y)
ann["area"] = (x1 - x0) * (y1 - y0)
ann["id"] = id + 1
ann["bbox"] = [x0, y0, x1 - x0, y1 - y0]
res.dataset["annotations"] = anns
res.createIndex()
return res
#################################################################
# end of straight copy from pycocotools
#################################################################
#################################################################
# From pycocotools, but added handling of custom area rngs, and returns stat keys
#################################################################
def summarize(self):
"""
Compute and display summary metrics for evaluation results.
Note this functin can *only* be applied on the default parameter setting
"""
def _summarize(ap=1, iouThr=None, areaRng="all", maxDets=100):
p = self.params
iStr = " {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}"
titleStr = "Average Precision" if ap == 1 else "Average Recall"
typeStr = "(AP)" if ap == 1 else "(AR)"
iouStr = (
"{:0.2f}:{:0.2f}".format(p.iouThrs[0], p.iouThrs[-1])
if iouThr is None
else "{:0.2f}".format(iouThr)
)
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
if ap == 1:
# dimension of precision: [TxRxKxAxM]
s = self.eval["precision"]
# IoU
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
s = s[:, :, :, aind, mind]
else:
# dimension of recall: [TxKxAxM]
s = self.eval["recall"]
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
s = s[:, :, aind, mind]
if len(s[s > -1]) == 0:
mean_s = -1
else:
mean_s = np.mean(s[s > -1])
print(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s))
return mean_s
def _summarizeDets():
nb_results = 6 + (len(self.params.areaRng) - 1) * 2
assert len(self.params.areaRng) == len(self.params.areaRngLbl)
stats = np.zeros((nb_results,))
keys = ["AP", "AP_50", "AP_75"]
stats[0] = _summarize(1, maxDets=self.params.maxDets[2])
stats[1] = _summarize(1, iouThr=0.5, maxDets=self.params.maxDets[2])
stats[2] = _summarize(1, iouThr=0.75, maxDets=self.params.maxDets[2])
cur_id = 3
for area in self.params.areaRngLbl[1:]:
stats[cur_id] = _summarize(1, areaRng=area, maxDets=self.params.maxDets[2])
cur_id += 1
keys.append(f"AP_{area}")
stats[cur_id] = _summarize(0, maxDets=self.params.maxDets[0])
cur_id += 1
stats[cur_id] = _summarize(0, maxDets=self.params.maxDets[1])
cur_id += 1
stats[cur_id] = _summarize(0, maxDets=self.params.maxDets[2])
cur_id += 1
keys += ["AR", "AR_50", "AR_75"]
for area in self.params.areaRngLbl[1:]:
stats[cur_id] = _summarize(0, areaRng=area, maxDets=self.params.maxDets[2])
cur_id += 1
keys.append(f"AR_{area}")
assert len(stats) == len(keys)
return keys, stats
if not self.eval:
raise Exception("Please run accumulate() first")
self.stats = _summarizeDets()
#################################################################
# end of straight copy from pycocotools
#################################################################
#################################################################
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/evaluation/fast_eval_api.py
# with slight adjustments
#################################################################
def accumulate(self, use_self_eval=False):
"""
Accumulate per image evaluation results and store the result in self.eval. Does not
support changing parameter settings from those used by self.evaluate()
"""
if use_self_eval:
self.accumulate()
return
# CPP code is disabled
# self.eval = _CPP.COCOevalAccumulate(self.params, self.evalImgs)
# # recall is num_iou_thresholds X num_categories X num_area_ranges X num_max_detections
# self.eval["recall"] = np.array(self.eval["recall"]).reshape(
# self.eval["counts"][:1] + self.eval["counts"][2:]
# )
# # precision and scores are num_iou_thresholds X num_recall_thresholds X num_categories X
# # num_area_ranges X num_max_detections
# self.eval["precision"] = np.array(self.eval["precision"]).reshape(
# self.eval["counts"]
# )
# self.eval["scores"] = np.array(self.eval["scores"]).reshape(self.eval["counts"])
|