File size: 26,245 Bytes
14114e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 |
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
import contextlib
import copy
import json
import os
import time
from collections import defaultdict
from dataclasses import dataclass
from typing import List, Union
import numpy as np
import pycocotools.mask as maskUtils
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from scipy.optimize import linear_sum_assignment
from tqdm import tqdm
@dataclass
class Metric:
name: str
# whether the metric is computed at the image level or the box level
image_level: bool
# iou threshold (None is used for image level metrics or to indicate averaging over all thresholds in [0.5:0.95])
iou_threshold: Union[float, None]
CGF1_METRICS = [
Metric(name="cgF1", image_level=False, iou_threshold=None),
Metric(name="precision", image_level=False, iou_threshold=None),
Metric(name="recall", image_level=False, iou_threshold=None),
Metric(name="F1", image_level=False, iou_threshold=None),
Metric(name="positive_macro_F1", image_level=False, iou_threshold=None),
Metric(name="positive_micro_F1", image_level=False, iou_threshold=None),
Metric(name="positive_micro_precision", image_level=False, iou_threshold=None),
Metric(name="IL_precision", image_level=True, iou_threshold=None),
Metric(name="IL_recall", image_level=True, iou_threshold=None),
Metric(name="IL_F1", image_level=True, iou_threshold=None),
Metric(name="IL_FPR", image_level=True, iou_threshold=None),
Metric(name="IL_MCC", image_level=True, iou_threshold=None),
Metric(name="cgF1", image_level=False, iou_threshold=0.5),
Metric(name="precision", image_level=False, iou_threshold=0.5),
Metric(name="recall", image_level=False, iou_threshold=0.5),
Metric(name="F1", image_level=False, iou_threshold=0.5),
Metric(name="positive_macro_F1", image_level=False, iou_threshold=0.5),
Metric(name="positive_micro_F1", image_level=False, iou_threshold=0.5),
Metric(name="positive_micro_precision", image_level=False, iou_threshold=0.5),
Metric(name="cgF1", image_level=False, iou_threshold=0.75),
Metric(name="precision", image_level=False, iou_threshold=0.75),
Metric(name="recall", image_level=False, iou_threshold=0.75),
Metric(name="F1", image_level=False, iou_threshold=0.75),
Metric(name="positive_macro_F1", image_level=False, iou_threshold=0.75),
Metric(name="positive_micro_F1", image_level=False, iou_threshold=0.75),
Metric(name="positive_micro_precision", image_level=False, iou_threshold=0.75),
]
class COCOCustom(COCO):
"""COCO class from pycocotools with tiny modifications for speed"""
def createIndex(self):
# create index
print("creating index...")
anns, cats, imgs = {}, {}, {}
imgToAnns, catToImgs = defaultdict(list), defaultdict(list)
if "annotations" in self.dataset:
for ann in self.dataset["annotations"]:
imgToAnns[ann["image_id"]].append(ann)
anns[ann["id"]] = ann
if "images" in self.dataset:
# MODIFICATION: do not reload imgs if they are already there
if self.imgs:
imgs = self.imgs
else:
for img in self.dataset["images"]:
imgs[img["id"]] = img
# END MODIFICATION
if "categories" in self.dataset:
for cat in self.dataset["categories"]:
cats[cat["id"]] = cat
if "annotations" in self.dataset and "categories" in self.dataset:
for ann in self.dataset["annotations"]:
catToImgs[ann["category_id"]].append(ann["image_id"])
print("index created!")
# create class members
self.anns = anns
self.imgToAnns = imgToAnns
self.catToImgs = catToImgs
self.imgs = imgs
self.cats = cats
def loadRes(self, resFile):
"""
Load result file and return a result api object.
:param resFile (str) : file name of result file
:return: res (obj) : result api object
"""
res = COCOCustom()
res.dataset["info"] = copy.deepcopy(self.dataset.get("info", {}))
# MODIFICATION: no copy
# res.dataset['images'] = [img for img in self.dataset['images']]
res.dataset["images"] = self.dataset["images"]
# END MODIFICATION
print("Loading and preparing results...")
tic = time.time()
if type(resFile) == str:
with open(resFile) as f:
anns = json.load(f)
elif type(resFile) == np.ndarray:
anns = self.loadNumpyAnnotations(resFile)
else:
anns = resFile
assert type(anns) == list, "results in not an array of objects"
annsImgIds = [ann["image_id"] for ann in anns]
# MODIFICATION: faster and cached subset check
if not hasattr(self, "img_id_set"):
self.img_id_set = set(self.getImgIds())
assert set(annsImgIds).issubset(
self.img_id_set
), "Results do not correspond to current coco set"
# END MODIFICATION
if "caption" in anns[0]:
imgIds = set([img["id"] for img in res.dataset["images"]]) & set(
[ann["image_id"] for ann in anns]
)
res.dataset["images"] = [
img for img in res.dataset["images"] if img["id"] in imgIds
]
for id, ann in enumerate(anns):
ann["id"] = id + 1
elif "bbox" in anns[0] and not anns[0]["bbox"] == []:
res.dataset["categories"] = copy.deepcopy(self.dataset["categories"])
for id, ann in enumerate(anns):
bb = ann["bbox"]
x1, x2, y1, y2 = [bb[0], bb[0] + bb[2], bb[1], bb[1] + bb[3]]
if not "segmentation" in ann:
ann["segmentation"] = [[x1, y1, x1, y2, x2, y2, x2, y1]]
ann["area"] = bb[2] * bb[3]
ann["id"] = id + 1
ann["iscrowd"] = 0
elif "segmentation" in anns[0]:
res.dataset["categories"] = copy.deepcopy(self.dataset["categories"])
for id, ann in enumerate(anns):
# now only support compressed RLE format as segmentation results
ann["area"] = maskUtils.area(ann["segmentation"])
if not "bbox" in ann:
ann["bbox"] = maskUtils.toBbox(ann["segmentation"])
ann["id"] = id + 1
ann["iscrowd"] = 0
elif "keypoints" in anns[0]:
res.dataset["categories"] = copy.deepcopy(self.dataset["categories"])
for id, ann in enumerate(anns):
s = ann["keypoints"]
x = s[0::3]
y = s[1::3]
x0, x1, y0, y1 = np.min(x), np.max(x), np.min(y), np.max(y)
ann["area"] = (x1 - x0) * (y1 - y0)
ann["id"] = id + 1
ann["bbox"] = [x0, y0, x1 - x0, y1 - y0]
print("DONE (t={:0.2f}s)".format(time.time() - tic))
res.dataset["annotations"] = anns
# MODIFICATION: inherit images
res.imgs = self.imgs
# END MODIFICATION
res.createIndex()
return res
class CGF1Eval(COCOeval):
"""
This evaluator is based upon COCO evaluation, but evaluates the model in a more realistic setting
for downstream applications.
See SAM3 paper for the details on the CGF1 metric.
Do not use this evaluator directly. Prefer the CGF1Evaluator wrapper.
Notes:
- This evaluator does not support per-category evaluation (in the way defined by pyCocotools)
- In open vocabulary settings, we have different noun-phrases for each image. What we call an "image_id" here is actually an (image, noun-phrase) pair. So in every "image_id" there is only one category, implied by the noun-phrase. Thus we can ignore the usual coco "category" field of the predictions
"""
def __init__(
self,
coco_gt=None,
coco_dt=None,
iouType="segm",
threshold=0.5,
):
"""
Args:
coco_gt (COCO): ground truth COCO API
coco_dt (COCO): detections COCO API
iou_type (str): type of IoU to evaluate
threshold (float): threshold for predictions
"""
super().__init__(coco_gt, coco_dt, iouType)
self.threshold = threshold
self.params.useCats = False
self.params.areaRng = [[0**2, 1e5**2]]
self.params.areaRngLbl = ["all"]
self.params.maxDets = [1000000]
def computeIoU(self, imgId, catId):
# Same as the original COCOeval.computeIoU, but without sorting
p = self.params
if p.useCats:
gt = self._gts[imgId, catId]
dt = self._dts[imgId, catId]
else:
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
if len(gt) == 0 and len(dt) == 0:
return []
if p.iouType == "segm":
g = [g["segmentation"] for g in gt]
d = [d["segmentation"] for d in dt]
elif p.iouType == "bbox":
g = [g["bbox"] for g in gt]
d = [d["bbox"] for d in dt]
else:
raise Exception("unknown iouType for iou computation")
# compute iou between each dt and gt region
iscrowd = [int(o["iscrowd"]) for o in gt]
ious = maskUtils.iou(d, g, iscrowd)
return ious
def evaluateImg(self, imgId, catId, aRng, maxDet):
"""
perform evaluation for single category and image
:return: dict (single image results)
"""
p = self.params
assert not p.useCats, "This evaluator does not support per-category evaluation."
assert catId == -1
all_gts = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
keep_gt = np.array([not g["ignore"] for g in all_gts], dtype=bool)
gt = [g for g in all_gts if not g["ignore"]]
all_dts = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
keep_dt = np.array([d["score"] >= self.threshold for d in all_dts], dtype=bool)
dt = [d for d in all_dts if d["score"] >= self.threshold]
if len(gt) == 0 and len(dt) == 0:
# This is a "true negative" case, where there are no GTs and no predictions
# The box-level metrics are ill-defined, so we don't add them to this dict
return {
"image_id": imgId,
"IL_TP": 0,
"IL_TN": 1,
"IL_FP": 0,
"IL_FN": 0,
"num_dt": len(dt),
}
if len(gt) > 0 and len(dt) == 0:
# This is a "false negative" case, where there are GTs but no predictions
return {
"image_id": imgId,
"IL_TP": 0,
"IL_TN": 0,
"IL_FP": 0,
"IL_FN": 1,
"TPs": np.zeros((len(p.iouThrs),), dtype=np.int64),
"FPs": np.zeros((len(p.iouThrs),), dtype=np.int64),
"FNs": np.ones((len(p.iouThrs),), dtype=np.int64) * len(gt),
"local_F1s": np.zeros((len(p.iouThrs),), dtype=np.int64),
"local_positive_F1s": np.zeros((len(p.iouThrs),), dtype=np.int64),
"num_dt": len(dt),
}
# Load pre-computed ious
ious = self.ious[(imgId, catId)]
# compute matching
if len(ious) == 0:
ious = np.zeros((len(dt), len(gt)))
else:
ious = ious[keep_dt, :][:, keep_gt]
assert ious.shape == (len(dt), len(gt))
matched_dt, matched_gt = linear_sum_assignment(-ious)
match_scores = ious[matched_dt, matched_gt]
TPs, FPs, FNs = [], [], []
IL_perfect = []
for thresh in p.iouThrs:
TP = (match_scores >= thresh).sum()
FP = len(dt) - TP
FN = len(gt) - TP
assert (
FP >= 0 and FN >= 0
), f"FP: {FP}, FN: {FN}, TP: {TP}, match_scores: {match_scores}, len(dt): {len(dt)}, len(gt): {len(gt)}, ious: {ious}"
TPs.append(TP)
FPs.append(FP)
FNs.append(FN)
if FP == FN and FP == 0:
IL_perfect.append(1)
else:
IL_perfect.append(0)
TPs = np.array(TPs, dtype=np.int64)
FPs = np.array(FPs, dtype=np.int64)
FNs = np.array(FNs, dtype=np.int64)
IL_perfect = np.array(IL_perfect, dtype=np.int64)
# compute precision recall and F1
precision = TPs / (TPs + FPs + 1e-4)
assert np.all(precision <= 1)
recall = TPs / (TPs + FNs + 1e-4)
assert np.all(recall <= 1)
F1 = 2 * precision * recall / (precision + recall + 1e-4)
result = {
"image_id": imgId,
"TPs": TPs,
"FPs": FPs,
"FNs": FNs,
"local_F1s": F1,
"IL_TP": (len(gt) > 0) and (len(dt) > 0),
"IL_FP": (len(gt) == 0) and (len(dt) > 0),
"IL_TN": (len(gt) == 0) and (len(dt) == 0),
"IL_FN": (len(gt) > 0) and (len(dt) == 0),
"num_dt": len(dt),
}
if len(gt) > 0 and len(dt) > 0:
result["local_positive_F1s"] = F1
return result
def accumulate(self, p=None):
"""
Accumulate per image evaluation results and store the result in self.eval
:param p: input params for evaluation
:return: None
"""
if self.evalImgs is None or len(self.evalImgs) == 0:
print("Please run evaluate() first")
# allows input customized parameters
if p is None:
p = self.params
setImgIds = set(p.imgIds)
# TPs, FPs, FNs
TPs = np.zeros((len(p.iouThrs),), dtype=np.int64)
FPs = np.zeros((len(p.iouThrs),), dtype=np.int64)
pmFPs = np.zeros((len(p.iouThrs),), dtype=np.int64)
FNs = np.zeros((len(p.iouThrs),), dtype=np.int64)
local_F1s = np.zeros((len(p.iouThrs),), dtype=np.float64)
# Image level metrics
IL_TPs = 0
IL_FPs = 0
IL_TNs = 0
IL_FNs = 0
valid_img_count = 0
valid_F1_count = 0
evaledImgIds = set()
for res in self.evalImgs:
if res["image_id"] not in setImgIds:
continue
evaledImgIds.add(res["image_id"])
IL_TPs += res["IL_TP"]
IL_FPs += res["IL_FP"]
IL_TNs += res["IL_TN"]
IL_FNs += res["IL_FN"]
if "TPs" not in res:
continue
TPs += res["TPs"]
FPs += res["FPs"]
FNs += res["FNs"]
valid_img_count += 1
if "local_positive_F1s" in res:
local_F1s += res["local_positive_F1s"]
pmFPs += res["FPs"]
if res["num_dt"] > 0:
valid_F1_count += 1
assert len(setImgIds - evaledImgIds) == 0, (
f"{len(setImgIds - evaledImgIds)} images not evaluated. "
f"Here are the IDs of the first 3: {list(setImgIds - evaledImgIds)[:3]}"
)
# compute precision recall and F1
precision = TPs / (TPs + FPs + 1e-4)
positive_micro_precision = TPs / (TPs + pmFPs + 1e-4)
assert np.all(precision <= 1)
recall = TPs / (TPs + FNs + 1e-4)
assert np.all(recall <= 1)
F1 = 2 * precision * recall / (precision + recall + 1e-4)
positive_micro_F1 = (
2
* positive_micro_precision
* recall
/ (positive_micro_precision + recall + 1e-4)
)
IL_rec = IL_TPs / (IL_TPs + IL_FNs + 1e-6)
IL_prec = IL_TPs / (IL_TPs + IL_FPs + 1e-6)
IL_F1 = 2 * IL_prec * IL_rec / (IL_prec + IL_rec + 1e-6)
IL_FPR = IL_FPs / (IL_FPs + IL_TNs + 1e-6)
IL_MCC = float(IL_TPs * IL_TNs - IL_FPs * IL_FNs) / (
(
float(IL_TPs + IL_FPs)
* float(IL_TPs + IL_FNs)
* float(IL_TNs + IL_FPs)
* float(IL_TNs + IL_FNs)
)
** 0.5
+ 1e-6
)
self.eval = {
"params": p,
"TPs": TPs,
"FPs": FPs,
"positive_micro_FPs": pmFPs,
"FNs": FNs,
"precision": precision,
"positive_micro_precision": positive_micro_precision,
"recall": recall,
"F1": F1,
"positive_micro_F1": positive_micro_F1,
"positive_macro_F1": local_F1s / valid_F1_count,
"IL_recall": IL_rec,
"IL_precision": IL_prec,
"IL_F1": IL_F1,
"IL_FPR": IL_FPR,
"IL_MCC": IL_MCC,
}
self.eval["cgF1"] = self.eval["positive_micro_F1"] * self.eval["IL_MCC"]
def summarize(self):
"""
Compute and display summary metrics for evaluation results.
"""
if not self.eval:
raise Exception("Please run accumulate() first")
def _summarize(iouThr=None, metric=""):
p = self.params
iStr = " {:<18} @[ IoU={:<9}] = {:0.3f}"
titleStr = "Average " + metric
iouStr = (
"{:0.2f}:{:0.2f}".format(p.iouThrs[0], p.iouThrs[-1])
if iouThr is None
else "{:0.2f}".format(iouThr)
)
s = self.eval[metric]
# IoU
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
if len(s[s > -1]) == 0:
mean_s = -1
else:
mean_s = np.mean(s[s > -1])
print(iStr.format(titleStr, iouStr, mean_s))
return mean_s
def _summarize_single(metric=""):
titleStr = "Average " + metric
iStr = " {:<35} = {:0.3f}"
s = self.eval[metric]
print(iStr.format(titleStr, s))
return s
def _summarizeDets():
stats = []
for metric in CGF1_METRICS:
if metric.image_level:
stats.append(_summarize_single(metric=metric.name))
else:
stats.append(
_summarize(iouThr=metric.iou_threshold, metric=metric.name)
)
return np.asarray(stats)
summarize = _summarizeDets
self.stats = summarize()
def _evaluate(self):
"""
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
"""
p = self.params
# add backward compatibility if useSegm is specified in params
p.imgIds = list(np.unique(p.imgIds))
p.useCats = False
p.maxDets = sorted(p.maxDets)
self.params = p
self._prepare()
# loop through images, area range, max detection number
catIds = [-1]
if p.iouType == "segm" or p.iouType == "bbox":
computeIoU = self.computeIoU
else:
raise RuntimeError(f"Unsupported iou {p.iouType}")
self.ious = {
(imgId, catId): computeIoU(imgId, catId)
for imgId in p.imgIds
for catId in catIds
}
maxDet = p.maxDets[-1]
evalImgs = [
self.evaluateImg(imgId, catId, areaRng, maxDet)
for catId in catIds
for areaRng in p.areaRng
for imgId in p.imgIds
]
# this is NOT in the pycocotools code, but could be done outside
evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds))
return p.imgIds, evalImgs
class CGF1Evaluator:
"""
Wrapper class for cgF1 evaluation.
This supports the oracle setting (when several ground-truths are available per image)
"""
def __init__(
self,
gt_path: Union[str, List[str]],
iou_type="segm",
verbose=False,
):
"""
Args:
gt_path (str or list of str): path(s) to ground truth COCO json file(s)
iou_type (str): type of IoU to evaluate
threshold (float): threshold for predictions
"""
self.gt_paths = gt_path if isinstance(gt_path, list) else [gt_path]
self.iou_type = iou_type
self.coco_gts = [COCOCustom(gt) for gt in self.gt_paths]
self.verbose = verbose
self.coco_evals = []
for i, coco_gt in enumerate(self.coco_gts):
self.coco_evals.append(
CGF1Eval(
coco_gt=coco_gt,
iouType=iou_type,
)
)
self.coco_evals[i].useCats = False
exclude_img_ids = set()
# exclude_img_ids are the ids that are not exhaustively annotated in any of the other gts
for coco_gt in self.coco_gts[1:]:
exclude_img_ids = exclude_img_ids.union(
{
img["id"]
for img in coco_gt.dataset["images"]
if not img["is_instance_exhaustive"]
}
)
# we only eval on instance exhaustive queries
self.eval_img_ids = [
img["id"]
for img in self.coco_gts[0].dataset["images"]
if (img["is_instance_exhaustive"] and img["id"] not in exclude_img_ids)
]
def evaluate(self, pred_file: str):
"""
Evaluate the detections using cgF1 metric.
Args:
pred_file: path to the predictions COCO json file
"""
assert len(self.coco_gts) > 0, "No ground truth provided for evaluation."
assert len(self.coco_gts) == len(
self.coco_evals
), "Mismatch in number of ground truths and evaluators."
if self.verbose:
print(f"Loading predictions from {pred_file}")
with open(pred_file, "r") as f:
preds = json.load(f)
if self.verbose:
print(f"Loaded {len(preds)} predictions")
img2preds = defaultdict(list)
for pred in preds:
img2preds[pred["image_id"]].append(pred)
all_eval_imgs = []
for img_id in tqdm(self.eval_img_ids, disable=not self.verbose):
results = img2preds[img_id]
all_scorings = []
for cur_coco_gt, coco_eval in zip(self.coco_gts, self.coco_evals):
# suppress pycocotools prints
with open(os.devnull, "w") as devnull:
with contextlib.redirect_stdout(devnull):
coco_dt = (
cur_coco_gt.loadRes(results) if results else COCOCustom()
)
coco_eval.cocoDt = coco_dt
coco_eval.params.imgIds = [img_id]
coco_eval.params.useCats = False
img_ids, eval_imgs = _evaluate(coco_eval)
all_scorings.append(eval_imgs)
selected = self._select_best_scoring(all_scorings)
all_eval_imgs.append(selected)
# After this point, we have selected the best scoring per image among several ground truths
# we can now accumulate and summarize, using only the first coco_eval
self.coco_evals[0].evalImgs = list(
np.concatenate(all_eval_imgs, axis=2).flatten()
)
self.coco_evals[0].params.imgIds = self.eval_img_ids
self.coco_evals[0]._paramsEval = copy.deepcopy(self.coco_evals[0].params)
if self.verbose:
print(f"Accumulating results")
self.coco_evals[0].accumulate()
print("cgF1 metric, IoU type={}".format(self.iou_type))
self.coco_evals[0].summarize()
print()
out = {}
for i, value in enumerate(self.coco_evals[0].stats):
name = CGF1_METRICS[i].name
if CGF1_METRICS[i].iou_threshold is not None:
name = f"{name}@{CGF1_METRICS[i].iou_threshold}"
out[f"cgF1_eval_{self.iou_type}_{name}"] = float(value)
return out
@staticmethod
def _select_best_scoring(scorings):
# This function is used for "oracle" type evaluation.
# It accepts the evaluation results with respect to several ground truths, and picks the best
if len(scorings) == 1:
return scorings[0]
assert (
scorings[0].ndim == 3
), f"Expecting results in [numCats, numAreas, numImgs] format, got {scorings[0].shape}"
assert (
scorings[0].shape[0] == 1
), f"Expecting a single category, got {scorings[0].shape[0]}"
for scoring in scorings:
assert (
scoring.shape == scorings[0].shape
), f"Shape mismatch: {scoring.shape}, {scorings[0].shape}"
selected_imgs = []
for img_id in range(scorings[0].shape[-1]):
best = scorings[0][:, :, img_id]
for scoring in scorings[1:]:
current = scoring[:, :, img_id]
if "local_F1s" in best[0, 0] and "local_F1s" in current[0, 0]:
# we were able to compute a F1 score for this particular image in both evaluations
# best["local_F1s"] contains the results at various IoU thresholds. We simply take the average for comparision
best_score = best[0, 0]["local_F1s"].mean()
current_score = current[0, 0]["local_F1s"].mean()
if current_score > best_score:
best = current
else:
# If we're here, it means that in that in some evaluation we were not able to get a valid local F1
# This happens when both the predictions and targets are empty. In that case, we can assume it's a perfect prediction
if "local_F1s" not in current[0, 0]:
best = current
selected_imgs.append(best)
result = np.stack(selected_imgs, axis=-1)
assert result.shape == scorings[0].shape
return result
|