Spaces:
Sleeping
Sleeping
Update leaderboard display
Browse files
app.py
CHANGED
|
@@ -1,114 +1,114 @@
|
|
| 1 |
-
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import json
|
| 4 |
-
import pandas as pd
|
| 5 |
-
import plotly.express as px
|
| 6 |
-
import plotly.graph_objects as go
|
| 7 |
-
|
| 8 |
-
def load_results():
|
| 9 |
-
with open('results.json', 'r') as f:
|
| 10 |
-
return json.load(f)
|
| 11 |
-
|
| 12 |
-
def create_metrics_df(results):
|
| 13 |
-
rows = []
|
| 14 |
-
for r in results:
|
| 15 |
-
row = {
|
| 16 |
-
'Model': r['model_name'],
|
| 17 |
-
'Timestamp': r['timestamp'],
|
| 18 |
-
'Embeddings': r['config']['embedding_model'],
|
| 19 |
-
'Retriever': r['config']['retriever_type'],
|
| 20 |
-
'Top-K': r['config']['retrieval_config'].get('top_k', 'N/A')
|
| 21 |
-
}
|
| 22 |
-
|
| 23 |
-
# Add metrics
|
| 24 |
-
metrics = r['metrics']
|
| 25 |
-
for category in ['retrieval', 'generation']:
|
| 26 |
-
if category in metrics:
|
| 27 |
-
for metric_name, value in metrics[category].items():
|
| 28 |
-
row[f"{category}_{metric_name}"] = round(value, 4)
|
| 29 |
-
|
| 30 |
-
rows.append(row)
|
| 31 |
-
|
| 32 |
-
return pd.DataFrame(rows)
|
| 33 |
-
|
| 34 |
-
def create_comparison_plot(df, metric_category):
|
| 35 |
-
metrics = [col for col in df.columns if col.startswith(metric_category)]
|
| 36 |
-
if not metrics:
|
| 37 |
-
return None
|
| 38 |
-
|
| 39 |
-
fig = go.Figure()
|
| 40 |
-
for metric in metrics:
|
| 41 |
-
fig.add_trace(go.Bar(
|
| 42 |
-
name=metric.split('_')[-1],
|
| 43 |
-
x=df['Model'],
|
| 44 |
-
y=df[metric],
|
| 45 |
-
text=df[metric].round(3),
|
| 46 |
-
textposition='auto',
|
| 47 |
-
))
|
| 48 |
-
|
| 49 |
-
fig.update_layout(
|
| 50 |
-
title=f"{metric_category.capitalize()} Metrics Comparison",
|
| 51 |
-
xaxis_title="Model",
|
| 52 |
-
yaxis_title="Score",
|
| 53 |
-
barmode='group'
|
| 54 |
-
)
|
| 55 |
-
return fig
|
| 56 |
-
|
| 57 |
-
def create_interface():
|
| 58 |
-
results = load_results()
|
| 59 |
-
df = create_metrics_df(results)
|
| 60 |
-
|
| 61 |
-
with gr.Blocks() as demo:
|
| 62 |
-
gr.Markdown("# RAG Evaluation Leaderboard")
|
| 63 |
-
|
| 64 |
-
with gr.Tabs():
|
| 65 |
-
with gr.Tab("Leaderboard"):
|
| 66 |
-
gr.Dataframe(
|
| 67 |
-
df,
|
| 68 |
-
headers=df.columns.tolist(),
|
| 69 |
-
interactive=False
|
| 70 |
-
)
|
| 71 |
-
|
| 72 |
-
with gr.Tab("Retrieval Metrics"):
|
| 73 |
-
gr.Plot(create_comparison_plot(df, 'retrieval'))
|
| 74 |
-
|
| 75 |
-
with gr.Tab("Generation Metrics"):
|
| 76 |
-
gr.Plot(create_comparison_plot(df, 'generation'))
|
| 77 |
-
|
| 78 |
-
with gr.Tab("Configuration Details"):
|
| 79 |
-
config_df = df[['Model', 'Embeddings', 'Retriever', 'Top-K', 'Timestamp']]
|
| 80 |
-
gr.Dataframe(config_df)
|
| 81 |
-
|
| 82 |
-
gr.Markdown('''
|
| 83 |
-
## How to Submit
|
| 84 |
-
|
| 85 |
-
To submit your results:
|
| 86 |
-
```python
|
| 87 |
-
from rag_leaderboard import RAGLeaderboard
|
| 88 |
-
|
| 89 |
-
# Initialize leaderboard
|
| 90 |
-
leaderboard = RAGLeaderboard(
|
| 91 |
-
repo_id="your-username/repo-name",
|
| 92 |
-
token="your-hf-token"
|
| 93 |
-
)
|
| 94 |
-
|
| 95 |
-
# Submit results
|
| 96 |
-
leaderboard.submit_results(
|
| 97 |
-
model_name="Your Model Name",
|
| 98 |
-
metrics={
|
| 99 |
-
"retrieval": {"hit_rate": 0.8, "mrr": 0.6},
|
| 100 |
-
"generation": {"rouge1": 0.7, "rouge2": 0.5, "rougeL": 0.6}
|
| 101 |
-
},
|
| 102 |
-
config={
|
| 103 |
-
"embedding_model": "your-embedding-model",
|
| 104 |
-
"retriever_type": "dense",
|
| 105 |
-
"retrieval_config": {"top_k": 3}
|
| 106 |
-
}
|
| 107 |
-
)
|
| 108 |
-
```
|
| 109 |
-
''')
|
| 110 |
-
|
| 111 |
-
return demo
|
| 112 |
-
|
| 113 |
-
demo = create_interface()
|
| 114 |
-
demo.launch()
|
|
|
|
| 1 |
+
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import json
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import plotly.express as px
|
| 6 |
+
import plotly.graph_objects as go
|
| 7 |
+
|
| 8 |
+
def load_results():
|
| 9 |
+
with open('results.json', 'r') as f:
|
| 10 |
+
return json.load(f)
|
| 11 |
+
|
| 12 |
+
def create_metrics_df(results):
|
| 13 |
+
rows = []
|
| 14 |
+
for r in results:
|
| 15 |
+
row = {
|
| 16 |
+
'Model': r['model_name'],
|
| 17 |
+
'Timestamp': r['timestamp'],
|
| 18 |
+
'Embeddings': r['config']['embedding_model'],
|
| 19 |
+
'Retriever': r['config']['retriever_type'],
|
| 20 |
+
'Top-K': r['config']['retrieval_config'].get('top_k', 'N/A')
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
# Add metrics
|
| 24 |
+
metrics = r['metrics']
|
| 25 |
+
for category in ['retrieval', 'generation']:
|
| 26 |
+
if category in metrics:
|
| 27 |
+
for metric_name, value in metrics[category].items():
|
| 28 |
+
row[f"{category}_{metric_name}"] = round(value, 4)
|
| 29 |
+
|
| 30 |
+
rows.append(row)
|
| 31 |
+
|
| 32 |
+
return pd.DataFrame(rows)
|
| 33 |
+
|
| 34 |
+
def create_comparison_plot(df, metric_category):
|
| 35 |
+
metrics = [col for col in df.columns if col.startswith(metric_category)]
|
| 36 |
+
if not metrics:
|
| 37 |
+
return None
|
| 38 |
+
|
| 39 |
+
fig = go.Figure()
|
| 40 |
+
for metric in metrics:
|
| 41 |
+
fig.add_trace(go.Bar(
|
| 42 |
+
name=metric.split('_')[-1],
|
| 43 |
+
x=df['Model'],
|
| 44 |
+
y=df[metric],
|
| 45 |
+
text=df[metric].round(3),
|
| 46 |
+
textposition='auto',
|
| 47 |
+
))
|
| 48 |
+
|
| 49 |
+
fig.update_layout(
|
| 50 |
+
title=f"{metric_category.capitalize()} Metrics Comparison",
|
| 51 |
+
xaxis_title="Model",
|
| 52 |
+
yaxis_title="Score",
|
| 53 |
+
barmode='group'
|
| 54 |
+
)
|
| 55 |
+
return fig
|
| 56 |
+
|
| 57 |
+
def create_interface():
|
| 58 |
+
results = load_results()
|
| 59 |
+
df = create_metrics_df(results)
|
| 60 |
+
|
| 61 |
+
with gr.Blocks() as demo:
|
| 62 |
+
gr.Markdown("# RAG Evaluation Leaderboard")
|
| 63 |
+
|
| 64 |
+
with gr.Tabs():
|
| 65 |
+
with gr.Tab("Leaderboard"):
|
| 66 |
+
gr.Dataframe(
|
| 67 |
+
df,
|
| 68 |
+
headers=df.columns.tolist(),
|
| 69 |
+
interactive=False
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
with gr.Tab("Retrieval Metrics"):
|
| 73 |
+
gr.Plot(create_comparison_plot(df, 'retrieval'))
|
| 74 |
+
|
| 75 |
+
with gr.Tab("Generation Metrics"):
|
| 76 |
+
gr.Plot(create_comparison_plot(df, 'generation'))
|
| 77 |
+
|
| 78 |
+
with gr.Tab("Configuration Details"):
|
| 79 |
+
config_df = df[['Model', 'Embeddings', 'Retriever', 'Top-K', 'Timestamp']]
|
| 80 |
+
gr.Dataframe(config_df)
|
| 81 |
+
|
| 82 |
+
gr.Markdown('''
|
| 83 |
+
## How to Submit
|
| 84 |
+
|
| 85 |
+
To submit your results:
|
| 86 |
+
```python
|
| 87 |
+
from rag_leaderboard import RAGLeaderboard
|
| 88 |
+
|
| 89 |
+
# Initialize leaderboard
|
| 90 |
+
leaderboard = RAGLeaderboard(
|
| 91 |
+
repo_id="your-username/repo-name",
|
| 92 |
+
token="your-hf-token"
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
# Submit results
|
| 96 |
+
leaderboard.submit_results(
|
| 97 |
+
model_name="Your Model Name",
|
| 98 |
+
metrics={
|
| 99 |
+
"retrieval": {"hit_rate": 0.8, "mrr": 0.6},
|
| 100 |
+
"generation": {"rouge1": 0.7, "rouge2": 0.5, "rougeL": 0.6}
|
| 101 |
+
},
|
| 102 |
+
config={
|
| 103 |
+
"embedding_model": "your-embedding-model",
|
| 104 |
+
"retriever_type": "dense",
|
| 105 |
+
"retrieval_config": {"top_k": 3}
|
| 106 |
+
}
|
| 107 |
+
)
|
| 108 |
+
```
|
| 109 |
+
''')
|
| 110 |
+
|
| 111 |
+
return demo
|
| 112 |
+
|
| 113 |
+
demo = create_interface()
|
| 114 |
+
demo.launch()
|