apexherbert200 commited on
Commit
d345be4
Β·
1 Parent(s): bf03689

Done with readme

Browse files
Files changed (1) hide show
  1. README.md +6 -85
README.md CHANGED
@@ -1,90 +1,11 @@
1
- # RateMyReview
2
-
3
- **RateMyReview** is a FastAPI-powered service that uses **zero-shot text classification** to automatically assign ratings (1–5 stars) to customer reviews. Instead of relying on pre-labeled datasets, the system leverages Hugging Face’s `facebook/bart-large-mnli` model to classify reviews into custom labels such as *worst experience*, *bad experience*, *average experience*, *good experience*, and *excellent experience*.
4
-
5
- ### ✨ Features
6
-
7
- * πŸš€ **Zero-Shot Classification** – no manual dataset labeling required
8
- * πŸ“Š **Text-to-Rating Mapping** – converts review text into a numeric score (1–5)
9
- * ⚑ **FastAPI Backend** – lightweight and production-ready API
10
- * 🐳 **Dockerized** – ready to run in any containerized environment
11
-
12
- ### πŸ”§ Tech Stack
13
-
14
- * [FastAPI](https://fastapi.tiangolo.com/) – API framework
15
- * [Transformers](https://huggingface.co/transformers/) – NLP models
16
- * [PyTorch](https://pytorch.org/) – deep learning backend
17
- * [Docker](https://www.docker.com/) – containerization
18
-
19
- ### πŸ“Œ Example Usage
20
-
21
  ---
22
- title: RateMyReview
23
- emoji: "πŸ“"
24
- colorFrom: indigo
25
  colorTo: blue
26
- sdk: streamlit
27
- sdk_version: "latest"
28
- app_file: app.py
29
  pinned: false
 
30
  ---
31
 
32
- ````markdown
33
- # RateMyReview
34
-
35
- **RateMyReview** is a FastAPI-powered service that uses **zero-shot text classification** to automatically assign ratings (1–5 stars) to customer reviews. Instead of relying on pre-labeled datasets, the system leverages Hugging Face’s `facebook/bart-large-mnli` model to classify reviews into custom labels such as *worst experience*, *bad experience*, *average experience*, *good experience*, and *excellent experience*.
36
-
37
- ### ✨ Features
38
-
39
- * πŸš€ **Zero-Shot Classification** – no manual dataset labeling required
40
- * πŸ“Š **Text-to-Rating Mapping** – converts review text into a numeric score (1–5)
41
- * ⚑ **FastAPI Backend** – lightweight and production-ready API
42
- * 🐳 **Dockerized** – ready to run in any containerized environment
43
-
44
- ### πŸ”§ Tech Stack
45
-
46
- * [FastAPI](https://fastapi.tiangolo.com/) – API framework
47
- * [Transformers](https://huggingface.co/transformers/) – NLP models
48
- * [PyTorch](https://pytorch.org/) – deep learning backend
49
- * [Docker](https://www.docker.com/) – containerization
50
-
51
- ### πŸ“Œ Example Usage
52
-
53
- ```json
54
- Input:
55
- "This was the most disappointing purchase I've ever made."
56
-
57
- Output:
58
- {
59
- "score": 1,
60
- "label": "worst experience"
61
- }
62
- ```
63
-
64
- ### πŸš€ Getting Started
65
-
66
- 1. Clone the repo
67
-
68
- ```bash
69
- git clone https://github.com/<your-username>/RateMyReview.git
70
- cd RateMyReview
71
- ```
72
-
73
- 2. Build and run with Docker
74
-
75
- ```bash
76
- docker build -t ratemyreview .
77
- docker run -p 8000:8000 ratemyreview
78
- ```
79
-
80
- 3. Send a request
81
-
82
- ```bash
83
- curl -X POST "http://127.0.0.1:8000/" -H "Content-Type: application/json" -d '{"review": "Great product, I loved it!"}'
84
- ```
85
-
86
- ---
87
-
88
- πŸ’‘ This project demonstrates how **zero-shot learning** can be applied to real-world customer feedback analysis without a custom training dataset.
89
-
90
- ````
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: AI_review
3
+ emoji: πŸ“Š
4
+ colorFrom: yellow
5
  colorTo: blue
6
+ sdk: docker
 
 
7
  pinned: false
8
+ short_description: An app that reviews as ratings
9
  ---
10
 
11
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference