Spaces:
Runtime error
Runtime error
Update app.py from anycoder
Browse files
app.py
ADDED
|
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
import tempfile
|
| 5 |
+
import os
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from sam_audio import SAMAudio, SAMAudioProcessor
|
| 8 |
+
from torchcodec.decoders import VideoDecoder
|
| 9 |
+
import warnings
|
| 10 |
+
|
| 11 |
+
# Suppress warnings for cleaner output
|
| 12 |
+
warnings.filterwarnings("ignore")
|
| 13 |
+
|
| 14 |
+
# Global variables to store model and processor
|
| 15 |
+
model = None
|
| 16 |
+
processor = None
|
| 17 |
+
device = None
|
| 18 |
+
|
| 19 |
+
# Custom theme for professional UI
|
| 20 |
+
custom_theme = gr.themes.Soft(
|
| 21 |
+
primary_hue="blue",
|
| 22 |
+
secondary_hue="indigo",
|
| 23 |
+
neutral_hue="slate",
|
| 24 |
+
font=gr.themes.GoogleFont("Inter"),
|
| 25 |
+
text_size="lg",
|
| 26 |
+
spacing_size="lg",
|
| 27 |
+
radius_size="md"
|
| 28 |
+
).set(
|
| 29 |
+
button_primary_background_fill="*primary_600",
|
| 30 |
+
button_primary_background_fill_hover="*primary_700",
|
| 31 |
+
block_title_text_weight="600",
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
def load_models():
|
| 35 |
+
"""Load the SAM-Audio model and processor"""
|
| 36 |
+
global model, processor, device
|
| 37 |
+
|
| 38 |
+
if model is None:
|
| 39 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 40 |
+
print(f"Loading SAM-Audio model on {device}...")
|
| 41 |
+
model = SAMAudio.from_pretrained("facebook/sam-audio-large").to(device).eval()
|
| 42 |
+
processor = SAMAudioProcessor.from_pretrained("facebook/sam-audio-large")
|
| 43 |
+
print("Models loaded successfully!")
|
| 44 |
+
|
| 45 |
+
return "Models loaded and ready for audio separation!"
|
| 46 |
+
|
| 47 |
+
def create_mask_from_video(video_path, prompt_text):
|
| 48 |
+
"""
|
| 49 |
+
Create a mask using SAM3 (simplified version for demo)
|
| 50 |
+
In a real implementation, you would use the actual SAM3 model
|
| 51 |
+
"""
|
| 52 |
+
try:
|
| 53 |
+
# For demo purposes, we'll create a simple mock mask
|
| 54 |
+
# In production, you would use the actual SAM3 model here
|
| 55 |
+
|
| 56 |
+
# Load video to get dimensions
|
| 57 |
+
decoder = VideoDecoder(video_path)
|
| 58 |
+
frames = decoder[:]
|
| 59 |
+
height, width = frames.shape[3], frames.shape[4]
|
| 60 |
+
|
| 61 |
+
# Create a simple mock mask (this would be replaced with actual SAM3 output)
|
| 62 |
+
# For demo, we'll create a mask that covers the left half of the video
|
| 63 |
+
mask = np.zeros((len(decoder), 1, height, width), dtype=bool)
|
| 64 |
+
mask[:, :, :, :width//2] = True # Left half mask
|
| 65 |
+
|
| 66 |
+
return mask
|
| 67 |
+
|
| 68 |
+
except Exception as e:
|
| 69 |
+
print(f"Error creating mask: {e}")
|
| 70 |
+
# Return empty mask if there's an error
|
| 71 |
+
decoder = VideoDecoder(video_path)
|
| 72 |
+
frames = decoder[:]
|
| 73 |
+
height, width = frames.shape[3], frames.shape[4]
|
| 74 |
+
return np.zeros((len(decoder), 1, height, width), dtype=bool)
|
| 75 |
+
|
| 76 |
+
def separate_audio_with_visual_prompting(video_file, prompt_text, progress=gr.Progress()):
|
| 77 |
+
"""
|
| 78 |
+
Separate audio using visual prompting with SAM3 masks
|
| 79 |
+
"""
|
| 80 |
+
global model, processor, device
|
| 81 |
+
|
| 82 |
+
# Ensure models are loaded
|
| 83 |
+
if model is None:
|
| 84 |
+
load_models()
|
| 85 |
+
|
| 86 |
+
try:
|
| 87 |
+
# Create temporary file if needed
|
| 88 |
+
if isinstance(video_file, str):
|
| 89 |
+
video_path = video_file
|
| 90 |
+
else:
|
| 91 |
+
# Save uploaded file to temp location
|
| 92 |
+
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_file:
|
| 93 |
+
temp_file.write(video_file)
|
| 94 |
+
video_path = temp_file.name
|
| 95 |
+
|
| 96 |
+
progress(0.1, "Creating visual mask...")
|
| 97 |
+
|
| 98 |
+
# Create mask using SAM3 (simplified for demo)
|
| 99 |
+
mask = create_mask_from_video(video_path, prompt_text)
|
| 100 |
+
mask_tensor = torch.from_numpy(mask)
|
| 101 |
+
|
| 102 |
+
progress(0.3, "Loading video frames...")
|
| 103 |
+
|
| 104 |
+
# Load video frames
|
| 105 |
+
decoder = VideoDecoder(video_path)
|
| 106 |
+
frames = decoder[:]
|
| 107 |
+
|
| 108 |
+
progress(0.5, "Processing with SAM-Audio model...")
|
| 109 |
+
|
| 110 |
+
# Process with visual prompting
|
| 111 |
+
inputs = processor(
|
| 112 |
+
audios=[video_path],
|
| 113 |
+
descriptions=[""], # Empty description for visual-only prompting
|
| 114 |
+
masked_videos=processor.mask_videos([frames], [mask_tensor]),
|
| 115 |
+
).to(device)
|
| 116 |
+
|
| 117 |
+
progress(0.7, "Separating audio...")
|
| 118 |
+
|
| 119 |
+
# Perform audio separation
|
| 120 |
+
with torch.inference_mode():
|
| 121 |
+
result = model.separate(inputs)
|
| 122 |
+
|
| 123 |
+
progress(0.9, "Processing results...")
|
| 124 |
+
|
| 125 |
+
# Convert result to numpy array for playback
|
| 126 |
+
target_audio = result.target[0].cpu().numpy()
|
| 127 |
+
residual_audio = result.residual[0].cpu().numpy()
|
| 128 |
+
|
| 129 |
+
# Clean up temp file
|
| 130 |
+
if not isinstance(video_file, str):
|
| 131 |
+
os.unlink(video_path)
|
| 132 |
+
|
| 133 |
+
progress(1.0, "Audio separation complete!")
|
| 134 |
+
|
| 135 |
+
return {
|
| 136 |
+
"target_audio": (48000, target_audio),
|
| 137 |
+
"residual_audio": (48000, residual_audio),
|
| 138 |
+
"status": "Success: Audio separation completed!"
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
except Exception as e:
|
| 142 |
+
error_msg = f"Error during audio separation: {str(e)}"
|
| 143 |
+
print(error_msg)
|
| 144 |
+
return {
|
| 145 |
+
"target_audio": None,
|
| 146 |
+
"residual_audio": None,
|
| 147 |
+
"status": error_msg
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
def simple_audio_separation(video_file, progress=gr.Progress()):
|
| 151 |
+
"""
|
| 152 |
+
Simple audio separation without visual prompting
|
| 153 |
+
"""
|
| 154 |
+
global model, processor, device
|
| 155 |
+
|
| 156 |
+
# Ensure models are loaded
|
| 157 |
+
if model is None:
|
| 158 |
+
load_models()
|
| 159 |
+
|
| 160 |
+
try:
|
| 161 |
+
# Create temporary file if needed
|
| 162 |
+
if isinstance(video_file, str):
|
| 163 |
+
video_path = video_file
|
| 164 |
+
else:
|
| 165 |
+
# Save uploaded file to temp location
|
| 166 |
+
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_file:
|
| 167 |
+
temp_file.write(video_file)
|
| 168 |
+
video_path = temp_file.name
|
| 169 |
+
|
| 170 |
+
progress(0.3, "Processing with SAM-Audio model...")
|
| 171 |
+
|
| 172 |
+
# Process without visual prompting
|
| 173 |
+
inputs = processor(
|
| 174 |
+
audios=[video_path],
|
| 175 |
+
descriptions=["Separate the main audio source"],
|
| 176 |
+
).to(device)
|
| 177 |
+
|
| 178 |
+
progress(0.6, "Separating audio...")
|
| 179 |
+
|
| 180 |
+
# Perform audio separation
|
| 181 |
+
with torch.inference_mode():
|
| 182 |
+
result = model.separate(inputs)
|
| 183 |
+
|
| 184 |
+
progress(0.9, "Processing results...")
|
| 185 |
+
|
| 186 |
+
# Convert result to numpy array for playback
|
| 187 |
+
target_audio = result.target[0].cpu().numpy()
|
| 188 |
+
residual_audio = result.residual[0].cpu().numpy()
|
| 189 |
+
|
| 190 |
+
# Clean up temp file
|
| 191 |
+
if not isinstance(video_file, str):
|
| 192 |
+
os.unlink(video_path)
|
| 193 |
+
|
| 194 |
+
progress(1.0, "Audio separation complete!")
|
| 195 |
+
|
| 196 |
+
return {
|
| 197 |
+
"target_audio": (48000, target_audio),
|
| 198 |
+
"residual_audio": (48000, residual_audio),
|
| 199 |
+
"status": "Success: Audio separation completed!"
|
| 200 |
+
}
|
| 201 |
+
|
| 202 |
+
except Exception as e:
|
| 203 |
+
error_msg = f"Error during audio separation: {str(e)}"
|
| 204 |
+
print(error_msg)
|
| 205 |
+
return {
|
| 206 |
+
"target_audio": None,
|
| 207 |
+
"residual_audio": None,
|
| 208 |
+
"status": error_msg
|
| 209 |
+
}
|
| 210 |
+
|
| 211 |
+
# Create the Gradio interface
|
| 212 |
+
with gr.Blocks(title="SAM Audio Large - Audio Separation", theme=custom_theme) as demo:
|
| 213 |
+
gr.Markdown("""
|
| 214 |
+
# π΅ SAM Audio Large - Audio Separation
|
| 215 |
+
|
| 216 |
+
This demo showcases the SAM Audio Large model for audio separation with visual prompting capabilities.
|
| 217 |
+
Upload a video and separate audio sources using text prompts to identify visual objects.
|
| 218 |
+
|
| 219 |
+
**Built with anycoder** - [Visit our Space](https://huggingface.co/spaces/akhaliq/anycoder)
|
| 220 |
+
""")
|
| 221 |
+
|
| 222 |
+
# Initialize models on app load
|
| 223 |
+
gr.Button("Load Models", variant="primary").click(
|
| 224 |
+
fn=load_models,
|
| 225 |
+
outputs=gr.Textbox(label="Model Status", interactive=False)
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
with gr.Tabs():
|
| 229 |
+
# Tab 1: Visual Prompting
|
| 230 |
+
with gr.Tab("Visual Prompting"):
|
| 231 |
+
gr.Markdown("""
|
| 232 |
+
## π₯ Visual Prompting for Audio Separation
|
| 233 |
+
|
| 234 |
+
Use text prompts to identify visual objects in the video and separate their associated audio.
|
| 235 |
+
""")
|
| 236 |
+
|
| 237 |
+
with gr.Row():
|
| 238 |
+
with gr.Column():
|
| 239 |
+
video_input = gr.Video(label="Upload Video", sources=["upload"])
|
| 240 |
+
prompt_input = gr.Textbox(
|
| 241 |
+
label="Visual Prompt",
|
| 242 |
+
placeholder="e.g., 'The person on the left', 'The guitar player', 'The car engine'",
|
| 243 |
+
lines=2
|
| 244 |
+
)
|
| 245 |
+
separate_btn = gr.Button("Separate Audio with Visual Prompt", variant="primary")
|
| 246 |
+
|
| 247 |
+
status_output = gr.Textbox(label="Status", interactive=False)
|
| 248 |
+
|
| 249 |
+
with gr.Column():
|
| 250 |
+
target_audio_output = gr.Audio(label="Target Audio (Separated)", type="numpy")
|
| 251 |
+
residual_audio_output = gr.Audio(label="Residual Audio", type="numpy")
|
| 252 |
+
|
| 253 |
+
separate_btn.click(
|
| 254 |
+
fn=separate_audio_with_visual_prompting,
|
| 255 |
+
inputs=[video_input, prompt_input],
|
| 256 |
+
outputs=[target_audio_output, residual_audio_output, status_output],
|
| 257 |
+
api_visibility="public"
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
# Tab 2: Simple Audio Separation
|
| 261 |
+
with gr.Tab("Simple Audio Separation"):
|
| 262 |
+
gr.Markdown("""
|
| 263 |
+
## π΅ Simple Audio Separation
|
| 264 |
+
|
| 265 |
+
Basic audio separation without visual prompting.
|
| 266 |
+
""")
|
| 267 |
+
|
| 268 |
+
with gr.Row():
|
| 269 |
+
with gr.Column():
|
| 270 |
+
simple_video_input = gr.Video(label="Upload Video", sources=["upload"])
|
| 271 |
+
simple_separate_btn = gr.Button("Separate Audio", variant="primary")
|
| 272 |
+
simple_status_output = gr.Textbox(label="Status", interactive=False)
|
| 273 |
+
|
| 274 |
+
with gr.Column():
|
| 275 |
+
simple_target_audio_output = gr.Audio(label="Target Audio (Separated)", type="numpy")
|
| 276 |
+
simple_residual_audio_output = gr.Audio(label="Residual Audio", type="numpy")
|
| 277 |
+
|
| 278 |
+
simple_separate_btn.click(
|
| 279 |
+
fn=simple_audio_separation,
|
| 280 |
+
inputs=[simple_video_input],
|
| 281 |
+
outputs=[simple_target_audio_output, simple_residual_audio_output, simple_status_output],
|
| 282 |
+
api_visibility="public"
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
# Tab 3: About
|
| 286 |
+
with gr.Tab("About"):
|
| 287 |
+
gr.Markdown("""
|
| 288 |
+
## π About SAM Audio Large
|
| 289 |
+
|
| 290 |
+
**SAM Audio Large** is a state-of-the-art audio separation model that can isolate specific audio sources from complex mixtures.
|
| 291 |
+
|
| 292 |
+
### Features:
|
| 293 |
+
- **Visual Prompting**: Use text descriptions to identify visual objects and separate their associated audio
|
| 294 |
+
- **High Quality**: Produces clean audio separations with minimal artifacts
|
| 295 |
+
- **Flexible**: Works with various audio sources and video formats
|
| 296 |
+
|
| 297 |
+
### How to Use:
|
| 298 |
+
1. **Visual Prompting**: Upload a video and provide a text prompt describing the visual object you want to isolate
|
| 299 |
+
2. **Simple Separation**: Upload a video for basic audio separation without visual guidance
|
| 300 |
+
3. The model will process the video and return separated audio tracks
|
| 301 |
+
|
| 302 |
+
### Technical Details:
|
| 303 |
+
- Model: `facebook/sam-audio-large`
|
| 304 |
+
- Sampling Rate: 48kHz
|
| 305 |
+
- Processing: GPU-accelerated for fast inference
|
| 306 |
+
|
| 307 |
+
### Limitations:
|
| 308 |
+
- Visual prompting requires SAM3 for mask generation (simplified in this demo)
|
| 309 |
+
- Processing time depends on video length and complexity
|
| 310 |
+
- Best results with clear visual-audio associations
|
| 311 |
+
|
| 312 |
+
**Built with anycoder** - [Visit our Space](https://huggingface.co/spaces/akhaliq/anycoder)
|
| 313 |
+
""")
|
| 314 |
+
|
| 315 |
+
# Add examples
|
| 316 |
+
gr.Examples(
|
| 317 |
+
examples=[
|
| 318 |
+
["https://gradio-builds.s3.amazonaws.com/assets/sample_video.mp4", "The person speaking"],
|
| 319 |
+
["https://gradio-builds.s3.amazonaws.com/assets/music_video.mp4", "The guitar player"],
|
| 320 |
+
],
|
| 321 |
+
inputs=[video_input, prompt_input],
|
| 322 |
+
outputs=[target_audio_output, residual_audio_output, status_output],
|
| 323 |
+
label="Example Videos",
|
| 324 |
+
examples_per_page=4
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
# Launch the app with Gradio 6 syntax
|
| 328 |
+
demo.launch(
|
| 329 |
+
theme=custom_theme,
|
| 330 |
+
footer_links=[
|
| 331 |
+
{"label": "Built with anycoder", "url": "https://huggingface.co/spaces/akhaliq/anycoder"},
|
| 332 |
+
{"label": "GitHub", "url": "https://github.com/facebookresearch/sam-audio"},
|
| 333 |
+
{"label": "Model Card", "url": "https://huggingface.co/facebook/sam-audio-large"}
|
| 334 |
+
],
|
| 335 |
+
show_error=True,
|
| 336 |
+
debug=False
|
| 337 |
+
)
|