Spaces:
Paused
Paused
File size: 18,583 Bytes
133e6e1 7a48d5d f33feb1 133e6e1 1bd62bb 4fbdfab 2abec95 7a48d5d 1bd62bb ae72f5f 4fbdfab ae72f5f 4fbdfab ae72f5f 4fbdfab ae72f5f a69dc08 ae72f5f 4fbdfab f33feb1 ae72f5f 4fbdfab 3e643af 4fbdfab 125c8b0 7a48d5d 125c8b0 fc5131b 266a885 4fbdfab 125c8b0 4fbdfab ae72f5f 6ee99f8 f33feb1 6ee99f8 4fbdfab 266a885 4838ba1 4fbdfab f33feb1 4fbdfab a69dc08 4fbdfab f33feb1 6ee99f8 f33feb1 6ee99f8 f33feb1 6ee99f8 4fbdfab 125c8b0 8e9cf60 125c8b0 a69dc08 133e6e1 4fbdfab a69dc08 3e5a149 4fbdfab 3e5a149 4fbdfab ae72f5f 4fbdfab 3e5a149 4fbdfab f33feb1 4fbdfab ae72f5f 4fbdfab f33feb1 4fbdfab f33feb1 4fbdfab ae72f5f 4fbdfab 3e5a149 4fbdfab 3e643af 4fbdfab 3e643af 4fbdfab 3e643af 4fbdfab 3e643af 4fbdfab 3e643af 4fbdfab 3e643af 4fbdfab 125c8b0 6ee99f8 4fbdfab 6ee99f8 f33feb1 6ee99f8 266a885 4fbdfab 266a885 f33feb1 6ee99f8 f33feb1 6ee99f8 f33feb1 6ee99f8 f33feb1 6ee99f8 4fbdfab ae72f5f 6ee99f8 4fbdfab fc5131b 7a48d5d 6ee99f8 4fbdfab 6ee99f8 f33feb1 6ee99f8 f33feb1 fc5131b 4fbdfab 3e643af 4fbdfab 3e643af 4fbdfab 3e5a149 4fbdfab 133e6e1 f33feb1 133e6e1 4fbdfab 7a48d5d 3e5a149 3e643af 4fbdfab 3e643af 4fbdfab 3e643af 7a48d5d 3e643af 4fbdfab 3e643af 8e9cf60 7a48d5d 4fbdfab 7a48d5d 4fbdfab 3e643af 125c8b0 7a48d5d 4fbdfab a69dc08 4fbdfab 3e643af 7a48d5d 4fbdfab f33feb1 4fbdfab a69dc08 3e643af 4fbdfab f33feb1 4fbdfab f33feb1 ae72f5f 4fbdfab f33feb1 4fbdfab 3e643af 4fbdfab 4c4f1bd 3e643af 3e5a149 4fbdfab 125c8b0 8493b64 3e5a149 ae72f5f 7a48d5d a69dc08 4fbdfab 6ee99f8 4fbdfab 4c4f1bd 7a48d5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
#!/usr/bin/env python3
"""
FastAPI JASCO server (Postman-ready) with robust Hugging Face auth and
safe handling of HF fast-transfer (hf_transfer).
- If HF_HUB_ENABLE_HF_TRANSFER=1 but 'hf_transfer' isn't installed, we fall back
to standard downloads and log a warning instead of failing.
- POST /predict supports multipart (drums_file) and JSON (drums_b64).
- GET /hf-status shows auth and model access.
Run:
export HUGGINGFACE_HUB_TOKEN=hf_xxx # or HF_TOKEN/HFTOKEN/HUGGINGFACEHUB_API_TOKEN
uvicorn main:app --host 0.0.0.0 --port 7860
"""
# -----------------------------
# Environment (HF Spaces-friendly)
# -----------------------------
import os
from pathlib import Path
from requests import Request, Response
from pydantic import BaseModel, Field
import numpy as np
from scipy.io import wavfile
from fastapi.responses import FileResponse
def _pick_cache_dir() -> Path:
for c in [Path("/data/cache"), Path("/tmp/audiocraft_cache"), Path.cwd() / "cache"]:
try:
c.mkdir(parents=True, exist_ok=True)
(c / ".w").touch(); (c / ".w").unlink()
return c
except Exception:
pass
return Path.cwd()
CACHE_DIR = _pick_cache_dir()
for sub in ["models", "huggingface", "transformers", "drum_cache", "cache"]:
(CACHE_DIR / sub).mkdir(parents=True, exist_ok=True)
os.environ["AUDIOCRAFT_CACHE_DIR"] = str(CACHE_DIR)
os.environ["XDG_CACHE_HOME"] = str(CACHE_DIR)
os.environ["TORCH_HOME"] = str(CACHE_DIR / "cache")
os.environ["HF_HOME"] = str(CACHE_DIR / "huggingface")
os.environ["TRANSFORMERS_CACHE"] = str(CACHE_DIR / "transformers")
os.environ["NUMBA_DISABLE_JIT"] = "1"
# Do NOT force-enable fast transfer; handle it dynamically below.
# os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1") # (removed)
# -----------------------------
# Imports
# -----------------------------
import io
import re
import json
import wave
import time
import base64
import random
import hashlib
import zipfile
from tempfile import NamedTemporaryFile
from typing import Optional, List, Tuple, Union, Optional
import numpy as np
import torch
from fastapi import FastAPI, Request, UploadFile, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse, JSONResponse
# Hugging Face auth helpers
from huggingface_hub import login as hf_login, HfApi, HfFolder
from huggingface_hub.utils import HfHubHTTPError
# JASCO / AudioCraft
from audiocraft.data.audio_utils import f32_pcm, normalize_audio
from audiocraft.data.audio import audio_write
from audiocraft.models import JASCO
# -----------------------------
# App boilerplate
# -----------------------------
app = FastAPI(title="JASCO /predict (HF auth)")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"]
)
# -----------------------------
# Hugging Face auth utilities
# -----------------------------
def _get_hf_token() -> Optional[str]:
for k in ("HUGGINGFACE_HUB_TOKEN", "HUGGINGFACEHUB_API_TOKEN", "HF_TOKEN", "HFTOKEN"):
v = os.getenv(k)
if v:
return v.strip()
return None
HF_TOKEN = _get_hf_token()
def ensure_hf_login():
"""Login once; provide clear logging. No-op if no token (but gated models will fail)."""
global HF_TOKEN
if not HF_TOKEN:
print("[HF] No token found in env (HUGGINGFACE_HUB_TOKEN / HUGGINGFACEHUB_API_TOKEN / HF_TOKEN / HFTOKEN).")
return
try:
hf_login(token=HF_TOKEN, add_to_git_credential=False)
HfFolder.save_token(HF_TOKEN) # persist under HF_HOME
who = HfApi().whoami(token=HF_TOKEN)
print(f"[HF] Logged in as: {who.get('name') or who.get('email') or who.get('username')}")
except Exception as e:
print(f"[HF] Login failed: {e}")
@app.get("/hf-status")
def hf_status():
token = _get_hf_token()
out = {"token_present": bool(token)}
try:
if token:
who = HfApi().whoami(token=token)
out["whoami"] = who
else:
out["whoami"] = None
except Exception as e:
out["whoami_error"] = str(e)
model_id = "facebook/jasco-chords-drums-melody-400M"
try:
api = HfApi()
info = api.model_info(model_id, token=token) if token else api.model_info(model_id)
out["model_access"] = True
out["model_private"] = getattr(info, "private", None)
out["gated"] = bool(getattr(info, "gated", False))
except Exception as e:
out["model_access"] = False
out["error"] = str(e)
return out
# -----------------------------
# Chords helpers
# -----------------------------
def _default_chord_map():
chords = [
"N","C","Cm","C7","Cmaj7","Cm7","D","Dm","D7","Dmaj7","Dm7",
"E","Em","E7","Emaj7","Em7","F","Fm","F7","Fmaj7","Fm7",
]
return {ch:i for i,ch in enumerate(chords)}
def _validate_chord(ch: str, mapping: dict) -> str:
return ch if ch in mapping else "UNK"
def chords_string_to_list(chords: str):
if not chords or chords.strip() == "":
return []
try:
clean = chords.replace("[", "").replace("]", "").replace(" ", "")
pairs = re.findall(r"\(([^,]+),([^)]+)\)", clean)
mapping = _default_chord_map()
return [(_validate_chord(ch.strip(), mapping), float(t.strip())) for ch, t in pairs]
except Exception:
return []
# -----------------------------
# Audio decoding (WAV stdlib)
# -----------------------------
def _read_wav_bytes(raw: Optional[bytes]) -> Tuple[int, Optional[torch.Tensor]]:
if not raw:
return 32000, None
try:
with wave.open(io.BytesIO(raw), "rb") as wf:
sr = wf.getframerate()
ch = wf.getnchannels()
sw = wf.getsampwidth()
frames = wf.getnframes()
buf = wf.readframes(frames)
if sw == 2: data = np.frombuffer(buf, dtype=np.int16).astype(np.float32) / 32768.0
elif sw == 1: data = (np.frombuffer(buf, dtype=np.uint8).astype(np.float32) - 128) / 128.0
elif sw == 4: data = np.frombuffer(buf, dtype=np.float32)
else: return 32000, None
if ch > 1: data = data.reshape(-1, ch).T
else: data = data[None, :]
drums = f32_pcm(torch.from_numpy(data)).t()
if drums.dim() == 1:
drums = drums[None]
drums = normalize_audio(drums, "loudness", loudness_headroom_db=16, sample_rate=sr)
return sr, drums
except Exception as e:
print(f"[audio] WAV decode failed: {e}")
return 32000, None
def _read_uploadfile_to_bytes(file: Optional[UploadFile]) -> Optional[bytes]:
if file is None:
return None
try:
return file.file.read()
except Exception:
return None
def _read_b64_to_bytes(b64str: Optional[str]) -> Optional[bytes]:
if not b64str:
return None
try:
s = b64str.strip()
if s.startswith("data:"):
s = s.split(",", 1)[1]
return base64.b64decode(s)
except Exception:
return None
# -----------------------------
# Model
# -----------------------------
MODEL = None
def _ensure_mapping_file() -> Path:
import pickle
mapping_file = CACHE_DIR / "chord_to_index_mapping.pkl"
if not mapping_file.exists():
with open(mapping_file, "wb") as f:
pickle.dump(_default_chord_map(), f)
return mapping_file
def load_model(name: str):
"""
Load JASCO, ensuring HF auth for gated repos.
Falls back if hf_transfer is unavailable.
"""
global MODEL
if MODEL is not None and getattr(MODEL, "name", None) == name:
return MODEL
# Ensure HF login
ensure_hf_login()
# Preflight access for clearer errors
try:
api = HfApi()
token = _get_hf_token()
_ = api.model_info(name, token=token) if token else api.model_info(name)
except HfHubHTTPError as e:
msg = (
f"Cannot access model '{name}'. This repo may be gated or private.\n"
f"- Ensure your token has access and terms are accepted.\n"
f"- Provide token via HUGGINGFACE_HUB_TOKEN (or HF_TOKEN/HFTOKEN/HUGGINGFACEHUB_API_TOKEN).\n"
f"Hugging Face error: {e}"
)
raise HTTPException(status_code=401, detail=msg)
cache_path = CACHE_DIR / name.replace("/", "_")
cache_path.mkdir(parents=True, exist_ok=True)
os.environ["AUDIOCRAFT_CACHE_DIR"] = str(cache_path)
os.environ["TRANSFORMERS_CACHE"] = str(cache_path / "transformers")
mapping_file = _ensure_mapping_file()
try:
model = JASCO.get_pretrained(name, device="cpu", chords_mapping_path=str(mapping_file))
model.name = name
import pickle
if not hasattr(model, "chord_to_index"):
with open(mapping_file, "rb") as f:
model.chord_to_index = pickle.load(f)
except HfHubHTTPError as e:
raise HTTPException(status_code=401, detail=f"Model load failed due to HF auth/access: {e}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Model load failed11: {e}")
MODEL = model
return MODEL
def set_gen_params(model, **kwargs):
valid = None
if hasattr(model, "get_generation_params"):
try:
valid = set(model.get_generation_params().keys())
except Exception:
pass
filtered, unknown = {}, []
for k, v in kwargs.items():
if valid is not None and k not in valid:
unknown.append(k)
else:
filtered[k] = v
print(f"[gen] request={kwargs}")
if valid is not None:
print(f"[gen] applied={filtered} unknown={unknown}")
model.set_generation_params(**filtered)
def _tensor_fp(t: Optional[torch.Tensor]) -> str:
if t is None:
return "NONE"
try:
x = t.detach().cpu().contiguous().float()
return hashlib.sha1(x.numpy().tobytes()).hexdigest()[:10]
except Exception:
return "ERR"
# -----------------------------
# Endpoints
# -----------------------------
@app.get("/health")
def health_check():
return {
"status": "healthy",
"model_loaded": MODEL is not None,
"cache_dir": str(CACHE_DIR),
}
_TEXT_KEYS = ["text", "prompt", "description", "query", "message", "input", "content"]
class PredictRequest(BaseModel):
model: str = Field(default="facebook/jasco-chords-drums-melody-400M")
text: str = ""
chords_sym: str = ""
n_samples: int = Field(default=2)
seed: Optional[int] = Field(default=None)
cfg_coef_all: float = Field(default=1.25)
cfg_coef_txt: float = 2.5
ode_rtol: float = 1e-4
ode_atol: float = 1e-4
ode_solver: str = "euler"
ode_steps: int = 10
drums_b64: Optional[str] = None
drums_upload: Optional[UploadFile] = None
class PredictResponse(BaseModel):
status: str = "success"
message: Optional[str] = None
data: Optional[dict] = None
def tensor_to_wav_scipy(tensor, sample_rate, filename):
# Convert to numpy and ensure correct format
audio_data = tensor.detach().cpu().numpy()
# Normalize to 16-bit range
audio_data = np.clip(audio_data, -1.0, 1.0)
audio_data = (audio_data * 32767).astype(np.int16)
# Save as WAV
wavfile.write(filename, sample_rate, audio_data)
class FileCleaner:
def __init__(self, file_lifetime: float = 3600):
self.file_lifetime = file_lifetime
self.files = []
def add(self, path: Union[str, Path]):
self._cleanup()
self.files.append((time.time(), Path(path)))
def _cleanup(self):
now = time.time()
for time_added, path in list(self.files):
if now - time_added > self.file_lifetime:
if path.exists():
path.unlink()
self.files.pop(0)
else:
break
file_cleaner = FileCleaner()
@app.post("/predict")
async def predict(request: Request):
"""
Returns a ZIP with jasco_1.wav, jasco_2.wav, ...
Accepts:
- multipart/form-data (fields + optional drums_file)
- application/json (fields + optional drums_b64)
"""
ct = (request.headers.get("content-type") or "application/json").lower()
params = {
"model": "facebook/jasco-chords-drums-melody-400M",
"text": "",
"chords_sym": "",
"n_samples": 1,
"seed": None,
"cfg_coef_all": 1.25,
"cfg_coef_txt": 2.5,
"ode_rtol": 1e-4,
"ode_atol": 1e-4,
"ode_solver": "euler",
"ode_steps": 10,
"drums_b64": None
}
drums_upload: Optional[UploadFile] = None
try:
if ct == "application/json":
data = await request.json()
if not isinstance(data, dict):
raise HTTPException(status_code=400, detail="JSON body must be an object")
for k in _TEXT_KEYS:
if k in data and data[k]:
params["text"] = data[k]; break
params["model"] = data.get("model", params["model"])
params["chords_sym"] = data.get("chords_sym", params["chords_sym"])
params["n_samples"] = int(data.get("n_samples", params["n_samples"]))
params["seed"] = data.get("seed", None)
params["cfg_coef_all"] = float(data.get("cfg_coef_all", params["cfg_coef_all"]))
params["cfg_coef_txt"] = float(data.get("cfg_coef_txt", params["cfg_coef_txt"]))
params["ode_rtol"] = float(data.get("ode_rtol", params["ode_rtol"]))
params["ode_atol"] = float(data.get("ode_atol", params["ode_atol"]))
params["ode_solver"] = str(data.get("ode_solver", params["ode_solver"])).lower()
params["ode_steps"] = int(data.get("ode_steps", params["ode_steps"]))
params["drums_b64"] = data.get("drums_b64", None)
raw_drums = _read_b64_to_bytes(params["drums_b64"])
else:
form = await request.form()
fd = {k: (form.get(k)) for k in form.keys() if form.get(k)}
for k in _TEXT_KEYS:
if k in fd and fd[k]:
params["text"] = fd[k]; break
params["model"] = fd.get("model", params["model"])
params["chords_sym"] = fd.get("chords_sym", params["chords_sym"])
params["n_samples"] = int(fd.get("n_samples", params["n_samples"]))
params["seed"] = fd.get("seed", None)
params["cfg_coef_all"] = float(fd.get("cfg_coef_all", params["cfg_coef_all"]))
params["cfg_coef_txt"] = float(fd.get("cfg_coef_txt", params["cfg_coef_txt"]))
params["ode_rtol"] = float(fd.get("ode_rtol", params["ode_rtol"]))
params["ode_atol"] = float(fd.get("ode_atol", params["ode_atol"]))
params["ode_solver"] = str(fd.get("ode_solver", params["ode_solver"])).lower()
params["ode_steps"] = int(fd.get("ode_steps", params["ode_steps"]))
params["drums_b64"] = fd.get("drums_b64", None)
drums_upload = form.get("drums_file")
raw_drums = _read_uploadfile_to_bytes(drums_upload) if drums_upload else _read_b64_to_bytes(params["drums_b64"])
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=400, detail=f"Bad request: {e}")
print(json.dumps({
"ct": ct,
"text_len": len(params["text"] or ""),
"text_preview": (params["text"] or "")[:120],
"model": params["model"],
"n_samples": params["n_samples"],
"has_drums_bytes": raw_drums is not None,
}))
model = load_model(params["model"]) # may raise HTTPException(401/500)
drums_sr, drums_tensor = _read_wav_bytes(raw_drums)
print(f"[predict] drums_present={drums_tensor is not None} sr={drums_sr} drums_fp={_tensor_fp(drums_tensor)}")
base_seed = int(params["seed"]) if params["seed"] is not None else (int(time.time() * 1000) & 0xFFFFFFFF)
random.seed(base_seed); np.random.seed(base_seed); torch.manual_seed(base_seed)
if torch.cuda.is_available(): torch.cuda.manual_seed_all(base_seed)
set_gen_params(
model,
cfg_coef_all=float(params["cfg_coef_all"]),
cfg_coef_txt=float(params["cfg_coef_txt"]),
ode_rtol=float(params["ode_rtol"]),
ode_atol=float(params["ode_atol"]),
euler=(params["ode_solver"] == "euler"),
euler_steps=int(params["ode_steps"])
)
texts = [params["text"]] * max(1, int(params["n_samples"]))
chords_list = chords_string_to_list(params["chords_sym"])
print(f"[predictdebug] chords_list={chords_list}")
print(f"[predictdebug] drums_tensor={drums_tensor}")
print(f"[predictdebug] drums_sr={drums_sr}")
print(f"[predictdebug] model={model}")
print(f"[predictdebug] texts={texts}")
try:
outputs = model.generate_music(
descriptions=texts,
chords=chords_list,
drums_wav=drums_tensor,
melody_salience_matrix=None,
drums_sample_rate=drums_sr,
progress=False
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Generation failed: {e}")
# Usage:
# for i, wav in enumerate(outputs):
# with NamedTemporaryFile("wb", suffix=".wav", delete=False) as f:
# tensor_to_wav_scipy(wav, model.sample_rate, f.name)
# zf.write(f.name, arcname=f"jasco_{i+1}.wav")
print(f"[predictdebug] outputs={outputs}") # Log the raw model outputs
# Convert model outputs from GPU tensor to CPU float tensor for processing
outputs = outputs.detach().cpu().float()
print(f"[predictdebug] outputs converted to cpu={outputs}") # Log the converted outputs
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as f:
tmp_path = f.name
audio_write(
tmp_path,
outputs[0],
MODEL.sample_rate, # or model.sample_rate β be consistent
strategy="loudness",
loudness_headroom_db=16,
loudness_compressor=True,
add_suffix=False,
)
return FileResponse(
path=tmp_path,
media_type="audio/wav",
filename="jasco_output.wav"
)
if __name__ == "__main__":
ensure_hf_login()
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
# outputs = [1,2]
# outputs[1] = [name, wav]
# wav =[0.39203242, ]
|