Spaces:
Running
Running
| import os, tempfile, streamlit as st | |
| from typing import List, IO, Tuple | |
| from dotenv import load_dotenv | |
| from PyPDF2 import PdfReader | |
| from docx import Document | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.schema import Document as LangchainDocument | |
| from langchain_community.vectorstores import FAISS | |
| from langchain_together.chat_models import ChatTogether | |
| from langchain_together.embeddings import TogetherEmbeddings # <-- NEW | |
| from langchain.prompts import PromptTemplate | |
| load_dotenv() | |
| # ---------- Helpers --------------------------------------------------------- | |
| def get_together_api_key() -> str: | |
| key = os.getenv("TOGETHER_API_KEY") or st.secrets.get("TOGETHER_API_KEY", None) | |
| if not key: | |
| raise EnvironmentError("TOGETHER_API_KEY not found in env or Streamlit secrets.") | |
| return key | |
| # ---------- File-reading utilities ----------------------------------------- | |
| def get_pdf_text(pdf_docs: List[IO[bytes]]) -> str: | |
| txt = "" | |
| for pdf in pdf_docs: | |
| for page in PdfReader(pdf).pages: | |
| if (t := page.extract_text()): | |
| txt += t + "\n" | |
| return txt | |
| def get_docx_text(docx_docs: List[IO[bytes]]) -> str: | |
| txt = "" | |
| for d in docx_docs: | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".docx") as tmp: | |
| tmp.write(d.getvalue()); tmp.flush() | |
| try: | |
| doc = Document(tmp.name) | |
| txt += "\n".join(p.text for p in doc.paragraphs) + "\n" | |
| finally: | |
| os.unlink(tmp.name) | |
| return txt | |
| def get_text_chunks(text: str) -> List[str]: | |
| return RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200).split_text(text) | |
| # ---------- Vector-store build & save -------------------------------------- | |
| def get_vector_store(text_chunks: List[str]) -> None: | |
| api_key = get_together_api_key() | |
| embeddings = TogetherEmbeddings(model="BAAI/bge-base-en-v1.5", api_key=api_key) | |
| vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) | |
| vector_store.save_local("faiss_index") | |
| # ---------- QA chain helpers ---------------------------------------------- | |
| def get_conversational_chain() -> Tuple[ChatTogether, PromptTemplate]: | |
| api_key = get_together_api_key() | |
| llm = ChatTogether(model="meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo", | |
| temperature=0.3, api_key=api_key) | |
| prompt = PromptTemplate( | |
| template=( | |
| "As a professional assistant, provide a detailed and formally written " | |
| "answer to the question using the provided context.\n\nContext:\n{context}\n\n" | |
| "Question:\n{question}\n\nAnswer:" | |
| ), | |
| input_variables=["context", "question"] | |
| ) | |
| return llm, prompt | |
| def self_assess(question: str) -> str: | |
| api_key = get_together_api_key() | |
| llm = ChatTogether(model="meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo", | |
| temperature=0.3, api_key=api_key) | |
| msgs = [ | |
| {"role": "system", "content": "You are an expert assistant…"}, | |
| {"role": "user", "content": ( | |
| "If you can confidently answer the following question from your own " | |
| "knowledge, do so; otherwise reply with 'NEED_RETRIEVAL'.\n\n" | |
| f"Question: {question}" | |
| )} | |
| ] | |
| return llm.invoke(msgs).content.strip() | |
| def process_docs_for_query(docs: List[LangchainDocument], question: str) -> str: | |
| if not docs: | |
| return "Sorry, I couldn’t find relevant info in the documents." | |
| ctx = "\n\n".join(d.page_content for d in docs) | |
| llm, prompt = get_conversational_chain() | |
| return llm.invoke(prompt.format(context=ctx, question=question)).content | |
| # ---------- Main user-query orchestrator ----------------------------------- | |
| def user_input(user_question: str) -> None: | |
| assessment = self_assess(user_question) | |
| need_retrieval = assessment.upper() == "NEED_RETRIEVAL" | |
| st.info("🔍 Searching documents…" if need_retrieval else "💡 Using model knowledge…") | |
| try: | |
| if need_retrieval: | |
| api_key = get_together_api_key() | |
| embeddings = TogetherEmbeddings(model="BAAI/bge-base-en-v1.5", api_key=api_key) | |
| vs = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) | |
| docs = vs.similarity_search(user_question) | |
| answer = process_docs_for_query(docs, user_question) | |
| else: | |
| answer = assessment | |
| st.markdown("### Answer") | |
| st.markdown(answer) | |
| except Exception as e: | |
| st.error(f"⚠️ Error: {e}") | |