Spaces:
Runtime error
Runtime error
File size: 14,101 Bytes
dbb5a8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import gradio as gr
import os
import subprocess
import shutil
import json
import time
from pathlib import Path
import torch
# Setup directories
DATASET_DIR = Path("./datasets")
OUTPUT_DIR = Path("./output")
DATASET_DIR.mkdir(exist_ok=True)
OUTPUT_DIR.mkdir(exist_ok=True)
# Global variable to store dataset path
current_dataset_path = None
def check_gpu():
"""Check if GPU is available"""
if torch.cuda.is_available():
gpu_name = torch.cuda.get_device_name(0)
return f"β
GPU Available: {gpu_name}"
return "β οΈ No GPU detected - training will be slow"
def upload_and_prepare_dataset(files, dataset_name, trigger_word):
"""Upload images and prepare dataset"""
global current_dataset_path
if not files:
return "β Please upload at least one image", None, ""
if not dataset_name:
dataset_name = f"dataset_{int(time.time())}"
# Create dataset directory
dataset_path = DATASET_DIR / dataset_name
dataset_path.mkdir(exist_ok=True, parents=True)
# Save images
image_count = 0
for file in files:
if file.name.lower().endswith(('.png', '.jpg', '.jpeg', '.webp', '.bmp')):
filename = Path(file.name).name
destination = dataset_path / filename
shutil.copy(file.name, destination)
# Create simple caption file
caption_file = destination.with_suffix('.txt')
caption_text = trigger_word if trigger_word else "a photo"
with open(caption_file, 'w') as f:
f.write(caption_text)
image_count += 1
if image_count == 0:
return "β No valid images found. Upload PNG, JPG, JPEG, or WEBP files.", None, ""
current_dataset_path = str(dataset_path)
status = f"β
Successfully uploaded {image_count} images\n"
status += f"π Dataset: {dataset_name}\n"
if trigger_word:
status += f"π·οΈ Trigger word: '{trigger_word}'\n"
status += f"πΎ Location: {current_dataset_path}"
return status, current_dataset_path, f"Dataset ready: {dataset_name}"
def train_lora(
dataset_path,
project_name,
trigger_word,
steps,
learning_rate,
lora_rank,
resolution,
progress=gr.Progress()
):
"""Train LoRA model"""
if not dataset_path or not os.path.exists(dataset_path):
return "β Please upload a dataset first!", None
if not project_name:
project_name = f"lora_{int(time.time())}"
output_path = OUTPUT_DIR / project_name
output_path.mkdir(exist_ok=True, parents=True)
# Create training config
config = {
"job": "extension",
"config": {
"name": project_name,
"process": [{
"type": "sd_trainer",
"training_folder": str(output_path),
"device": "cuda:0",
"trigger_word": trigger_word or "",
"network": {
"type": "lora",
"linear": int(lora_rank),
"linear_alpha": int(lora_rank),
},
"save": {
"dtype": "float16",
"save_every": max(100, int(steps / 4)),
"max_step_saves_to_keep": 3,
},
"datasets": [{
"folder_path": dataset_path,
"caption_ext": "txt",
"caption_dropout_rate": 0.05,
"resolution": [int(resolution), int(resolution)],
}],
"train": {
"batch_size": 1,
"steps": int(steps),
"gradient_accumulation_steps": 1,
"train_unet": True,
"train_text_encoder": False,
"gradient_checkpointing": True,
"noise_scheduler": "flowmatch",
"optimizer": "adamw8bit",
"lr": float(learning_rate),
"ema_config": {
"use_ema": True,
"ema_decay": 0.99,
},
"dtype": "bf16",
},
"model": {
"name_or_path": "Tongyi-MAI/Z-Image-Base",
"is_v_pred": False,
"quantize": True,
},
"sample": {
"sampler": "flowmatch",
"sample_every": max(100, int(steps / 4)),
"width": int(resolution),
"height": int(resolution),
"prompts": [
f"{trigger_word} high quality photo" if trigger_word else "high quality photo",
f"{trigger_word} beautiful scene" if trigger_word else "beautiful scene",
],
"neg": "",
"seed": 42,
"guidance_scale": 0.0,
"sample_steps": 9,
},
}]
}
}
# Save config
config_path = output_path / "config.json"
with open(config_path, 'w') as f:
json.dump(config, f, indent=2)
progress(0.1, desc="Installing AI Toolkit...")
# Install AI Toolkit if not exists
if not Path("./ai-toolkit").exists():
try:
subprocess.run(
["git", "clone", "https://github.com/ostris/ai-toolkit.git"],
check=True,
capture_output=True
)
os.chdir("ai-toolkit")
subprocess.run(
["git", "submodule", "update", "--init", "--recursive"],
check=True,
capture_output=True
)
subprocess.run(
["pip", "install", "-q", "-r", "requirements.txt"],
check=True
)
os.chdir("..")
except Exception as e:
return f"β Failed to install AI Toolkit: {str(e)}", None
progress(0.3, desc="Starting training...")
# Run training
try:
result = subprocess.run(
["python", "ai-toolkit/run.py", str(config_path)],
capture_output=True,
text=True,
timeout=3600 # 1 hour timeout
)
if result.returncode != 0:
return f"β Training failed:\n{result.stderr}", None
progress(0.9, desc="Training complete! Finding LoRA file...")
# Find the trained LoRA file
lora_files = list(output_path.glob("*.safetensors"))
if lora_files:
lora_file = lora_files[-1] # Get the latest one
success_msg = f"β
Training Complete!\n\n"
success_msg += f"π¦ LoRA saved: {lora_file.name}\n"
success_msg += f"πΎ Size: {lora_file.stat().st_size / (1024*1024):.2f} MB\n"
success_msg += f"π·οΈ Use trigger word: '{trigger_word}' in your prompts"
return success_msg, str(lora_file)
else:
return "β οΈ Training completed but no LoRA file found", None
except subprocess.TimeoutExpired:
return "β Training timeout (> 1 hour). Try reducing steps.", None
except Exception as e:
return f"β Training error: {str(e)}", None
# Gradio Interface
with gr.Blocks(title="Z-Image LoRA Trainer", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π¨ Z-Image LoRA Trainer
Train custom LoRA models for Z-Image-Base (6B parameter model)
**Quick Start:**
1. Upload 10-50 images of your subject
2. Enter a trigger word (e.g., "mycharacter", "mystyle")
3. Click Train
4. Download your LoRA when complete
β οΈ **Note:** Training takes 10-30 minutes depending on steps. Don't close this tab!
""")
# GPU Status
gpu_status = gr.Textbox(label="GPU Status", value=check_gpu(), interactive=False)
with gr.Tab("π€ Upload Dataset"):
with gr.Row():
with gr.Column():
file_input = gr.Files(
label="Upload Images (10-50 recommended)",
file_types=["image"],
file_count="multiple"
)
dataset_name_input = gr.Textbox(
label="Dataset Name",
placeholder="my_dataset",
value="my_dataset"
)
trigger_word_input = gr.Textbox(
label="Trigger Word (optional but recommended)",
placeholder="e.g., mycharacter, mystyle",
info="A unique word to activate your LoRA"
)
upload_btn = gr.Button("π€ Upload Dataset", variant="primary", size="lg")
with gr.Column():
upload_status = gr.Textbox(label="Upload Status", lines=8)
dataset_path_state = gr.Textbox(label="Dataset Path", visible=False)
dataset_ready = gr.Textbox(label="Ready to Train", interactive=False)
with gr.Tab("π Train LoRA"):
with gr.Row():
with gr.Column():
project_name_input = gr.Textbox(
label="Project Name",
placeholder="my_lora",
value="my_lora"
)
gr.Markdown("### Training Settings")
steps_input = gr.Slider(
label="Training Steps",
minimum=100,
maximum=3000,
value=1000,
step=100,
info="More steps = better quality but slower. Start with 1000."
)
learning_rate_input = gr.Slider(
label="Learning Rate",
minimum=0.00001,
maximum=0.001,
value=0.0001,
step=0.00001,
info="Default 0.0001 works well for most cases"
)
lora_rank_input = gr.Slider(
label="LoRA Rank",
minimum=4,
maximum=128,
value=16,
step=4,
info="Higher = more detail but larger file. 16 is balanced."
)
resolution_input = gr.Radio(
label="Resolution",
choices=[512, 768, 1024],
value=1024,
info="Z-Image native resolution is 1024x1024"
)
train_btn = gr.Button("π Start Training", variant="primary", size="lg")
with gr.Column():
training_status = gr.Textbox(label="Training Status", lines=15)
lora_output = gr.File(label="Download Trained LoRA")
with gr.Tab("βΉοΈ Help"):
gr.Markdown("""
## π How to Use
### Step 1: Prepare Your Images
- **10-50 images** of your subject (more is better for complex subjects)
- **Consistent subject** across images
- **Good variety** in poses, angles, lighting
- **High quality** photos (clear, well-lit)
### Step 2: Upload Dataset
- Choose a descriptive **dataset name**
- Add a **trigger word** (e.g., "sks person", "mystyle")
- Upload your images
### Step 3: Configure Training
- **Project name**: Name for your LoRA
- **Steps**:
- 500-1000 for simple subjects
- 1000-2000 for complex subjects/styles
- **Learning rate**: Keep default (0.0001)
- **LoRA Rank**: 16 is good for most cases
### Step 4: Train
- Click "Start Training"
- Wait 10-30 minutes (don't close tab)
- Download your LoRA when complete
### Step 5: Use Your LoRA
- Load in ComfyUI, Automatic1111, or other Z-Image tools
- Use your trigger word in prompts
- Example: "a photo of [trigger_word] in a forest"
## π― Tips for Best Results
- **Good dataset** = good results
- **Consistent subject** across images
- **Unique trigger word** (not common words)
- **Start with 1000 steps**, adjust if needed
- **Don't overtrain** (if quality decreases, reduce steps)
## β οΈ Troubleshooting
**Training fails with OOM error:**
- Reduce resolution to 768 or 512
- Use fewer steps
- Upload fewer images
**LoRA doesn't look like subject:**
- Upload more images (20-30+)
- Increase steps to 1500-2000
- Ensure images are consistent
**LoRA is too strong/weak:**
- Adjust LoRA weight in your inference tool (0.5-1.5)
## π Resources
- **Z-Image Model**: [Tongyi-MAI/Z-Image-Base](https://huggingface.co/Tongyi-MAI/Z-Image-Base)
- **AI Toolkit**: [github.com/ostris/ai-toolkit](https://github.com/ostris/ai-toolkit)
- **Training Adapter**: [ostris/zimage_turbo_training_adapter](https://huggingface.co/ostris/zimage_turbo_training_adapter)
""")
# Event handlers
upload_btn.click(
fn=upload_and_prepare_dataset,
inputs=[file_input, dataset_name_input, trigger_word_input],
outputs=[upload_status, dataset_path_state, dataset_ready]
)
train_btn.click(
fn=train_lora,
inputs=[
dataset_path_state,
project_name_input,
trigger_word_input,
steps_input,
learning_rate_input,
lora_rank_input,
resolution_input
],
outputs=[training_status, lora_output]
)
if __name__ == "__main__":
demo.launch() |