Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import numpy as np
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# ---------- 1. 加载 Hugging Face 模型 ----------
|
| 10 |
+
|
| 11 |
+
# 中 → 英 翻译
|
| 12 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-zh-en")
|
| 13 |
+
|
| 14 |
+
# 英文礼貌度(4 类:polite / somewhat polite / neutral / impolite)
|
| 15 |
+
politeness_cls = pipeline("text-classification", model="Intel/polite-guard")
|
| 16 |
+
|
| 17 |
+
# 英文正式度(3 类:formal / neutral / informal)
|
| 18 |
+
formality_cls = pipeline("text-classification", model="LenDigLearn/formality-classifier-mdeberta-v3-base")
|
| 19 |
+
|
| 20 |
+
# 英文 hedge / uncertainty(委婉/模糊表达)
|
| 21 |
+
hedge_cls = pipeline("text-classification", model="ChrisLiewJY/BERTweet-Hedge")
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# ---------- 2. 一些简单的中文 & 英文规则打分函数 ----------
|
| 25 |
+
|
| 26 |
+
POLITE_WORDS_ZH = ["请", "麻烦您", "劳烦", "敬请", "拜托", "打扰了", "烦请"]
|
| 27 |
+
HEDGE_WORDS_ZH = ["是否", "可能", "大概", "也许", "好像", "觉得", "有点"]
|
| 28 |
+
IMPERATIVE_WORDS_ZH = ["必须", "务必", "不得", "不准", "立即", "马上", "必须要"]
|
| 29 |
+
|
| 30 |
+
def score_chinese_features(text: str):
|
| 31 |
+
"""非常简单的中文语气打分:返回 0~1 之间的几个指标"""
|
| 32 |
+
if not text.strip():
|
| 33 |
+
return 0.5, 0.5, 0.0 # 默认中等
|
| 34 |
+
|
| 35 |
+
length = max(len(text), 1)
|
| 36 |
+
|
| 37 |
+
polite_hits = sum(text.count(w) for w in POLITE_WORDS_ZH)
|
| 38 |
+
hedge_hits = sum(text.count(w) for w in HEDGE_WORDS_ZH)
|
| 39 |
+
imp_hits = sum(text.count(w) for w in IMPERATIVE_WORDS_ZH)
|
| 40 |
+
|
| 41 |
+
polite_score = np.clip(polite_hits / 3.0, 0, 1) # 出现次数越多分越高
|
| 42 |
+
hedge_score = np.clip(hedge_hits / 3.0, 0, 1)
|
| 43 |
+
imp_score = np.clip(imp_hits / 2.0, 0, 1)
|
| 44 |
+
|
| 45 |
+
return float(polite_score), float(hedge_score), float(imp_score)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def map_polite_guard_to_score(label: str):
|
| 49 |
+
"""把 Intel/polite-guard 的 4 类映射到 [0,1] 礼貌度"""
|
| 50 |
+
label = label.lower()
|
| 51 |
+
if "polite" == label:
|
| 52 |
+
return 1.0
|
| 53 |
+
if "somewhat polite" in label:
|
| 54 |
+
return 0.75
|
| 55 |
+
if "neutral" in label:
|
| 56 |
+
return 0.5
|
| 57 |
+
if "impolite" in label:
|
| 58 |
+
return 0.0
|
| 59 |
+
return 0.5
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def map_formality_to_score(label: str):
|
| 63 |
+
"""formal / neutral / informal → [0,1] 正式度"""
|
| 64 |
+
label = label.lower()
|
| 65 |
+
if "formal" in label:
|
| 66 |
+
return 1.0
|
| 67 |
+
if "neutral" in label:
|
| 68 |
+
return 0.5
|
| 69 |
+
if "informal" in label:
|
| 70 |
+
return 0.0
|
| 71 |
+
return 0.5
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def map_hedge_to_score(label: str):
|
| 75 |
+
"""
|
| 76 |
+
BERTweet-Hedge 的 label 可能类似 "Hedge" / "No_Hedge" / 多类。
|
| 77 |
+
这里只是示意:如果包含 hedge 就算高 hedge。
|
| 78 |
+
"""
|
| 79 |
+
label = label.lower()
|
| 80 |
+
if "hedge" in label and "no" not in label:
|
| 81 |
+
return 1.0
|
| 82 |
+
if "no_hedge" in label:
|
| 83 |
+
return 0.0
|
| 84 |
+
# 多类时可以更细分,这里先给中等
|
| 85 |
+
return 0.5
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
IMPERATIVE_TRIGGER_EN = [
|
| 89 |
+
r"^please\b",
|
| 90 |
+
r"^kindly\b",
|
| 91 |
+
r"^do\b",
|
| 92 |
+
r"^make\b",
|
| 93 |
+
r"^send\b",
|
| 94 |
+
r"^provide\b",
|
| 95 |
+
r"\byou must\b",
|
| 96 |
+
r"\byou have to\b",
|
| 97 |
+
r"\byou are required to\b",
|
| 98 |
+
]
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def score_imperative_en(text: str):
|
| 102 |
+
"""用很简单的规则估计英文命令语气强度"""
|
| 103 |
+
t = text.strip().lower()
|
| 104 |
+
if not t:
|
| 105 |
+
return 0.0
|
| 106 |
+
hits = 0
|
| 107 |
+
for pat in IMPERATIVE_TRIGGER_EN:
|
| 108 |
+
if re.search(pat, t):
|
| 109 |
+
hits += 1
|
| 110 |
+
# 多个命令触发就提高分数
|
| 111 |
+
return float(np.clip(hits / 2.0, 0, 1))
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
# ---------- 3. 核心:分析函数 ----------
|
| 115 |
+
|
| 116 |
+
def analyze_letter(chinese_text: str):
|
| 117 |
+
if not chinese_text.strip():
|
| 118 |
+
return (
|
| 119 |
+
"", # 英文翻译
|
| 120 |
+
{}, # 中文指标
|
| 121 |
+
{}, # 英文指标
|
| 122 |
+
"N/A", # PD 等级
|
| 123 |
+
0.0, # PD 分数
|
| 124 |
+
None, # bar fig
|
| 125 |
+
None, # radar fig
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
# 1) 中文语气分析(规则)
|
| 129 |
+
polite_zh, hedge_zh, imp_zh = score_chinese_features(chinese_text)
|
| 130 |
+
|
| 131 |
+
zh_stats = {
|
| 132 |
+
"politeness": polite_zh,
|
| 133 |
+
"hedging": hedge_zh,
|
| 134 |
+
"imperative": imp_zh,
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
# 2) 中 → 英 翻译
|
| 138 |
+
translated = translator(chinese_text, max_length=512)[0]["translation_text"]
|
| 139 |
+
|
| 140 |
+
# 3) 英文礼貌度
|
| 141 |
+
pol_out = politeness_cls(translated)[0]
|
| 142 |
+
polite_en = map_polite_guard_to_score(pol_out["label"])
|
| 143 |
+
|
| 144 |
+
# 4) 英文正式度
|
| 145 |
+
form_out = formality_cls(translated)[0]
|
| 146 |
+
formality_en = map_formality_to_score(form_out["label"])
|
| 147 |
+
|
| 148 |
+
# 5) 英文 hedge 程度
|
| 149 |
+
hedge_out = hedge_cls(translated)[0]
|
| 150 |
+
hedge_en = map_hedge_to_score(hedge_out["label"])
|
| 151 |
+
|
| 152 |
+
# 6) 英文命令式强度
|
| 153 |
+
imp_en = score_imperative_en(translated)
|
| 154 |
+
|
| 155 |
+
en_stats = {
|
| 156 |
+
"politeness": polite_en,
|
| 157 |
+
"formality": formality_en,
|
| 158 |
+
"hedging": hedge_en,
|
| 159 |
+
"imperative": imp_en,
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
# 7) 计算英文侧权力距离得分(0~1)
|
| 163 |
+
power_distance_score = (
|
| 164 |
+
0.35 * (1 - polite_en)
|
| 165 |
+
+ 0.25 * formality_en
|
| 166 |
+
+ 0.25 * (1 - hedge_en)
|
| 167 |
+
+ 0.15 * imp_en
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# 三分类
|
| 171 |
+
if power_distance_score < 0.33:
|
| 172 |
+
level = "Low"
|
| 173 |
+
elif power_distance_score < 0.66:
|
| 174 |
+
level = "Medium"
|
| 175 |
+
else:
|
| 176 |
+
level = "High"
|
| 177 |
+
|
| 178 |
+
# ---------- 4. 画柱状图:中文 vs 英文对比 ----------
|
| 179 |
+
features = ["politeness", "formality", "hedging", "imperative"]
|
| 180 |
+
zh_vals = [zh_stats.get(k, 0.5 if k != "imperative" else 0.0) for k in features]
|
| 181 |
+
en_vals = [en_stats.get(k, 0.0) for k in features]
|
| 182 |
+
|
| 183 |
+
x = np.arange(len(features))
|
| 184 |
+
width = 0.35
|
| 185 |
+
|
| 186 |
+
fig_bar, ax_bar = plt.subplots()
|
| 187 |
+
ax_bar.bar(x - width/2, zh_vals, width, label="Chinese (source)")
|
| 188 |
+
ax_bar.bar(x + width/2, en_vals, width, label="English (translation)")
|
| 189 |
+
ax_bar.set_ylim(0, 1)
|
| 190 |
+
ax_bar.set_xticks(x)
|
| 191 |
+
ax_bar.set_xticklabels(features)
|
| 192 |
+
ax_bar.set_ylabel("Score (0–1)")
|
| 193 |
+
ax_bar.set_title("Chinese vs English stylistic features")
|
| 194 |
+
ax_bar.legend()
|
| 195 |
+
fig_bar.tight_layout()
|
| 196 |
+
|
| 197 |
+
# ---------- 5. 画雷达图 ----------
|
| 198 |
+
fig_radar = plt.figure()
|
| 199 |
+
ax_radar = fig_radar.add_subplot(111, polar=True)
|
| 200 |
+
|
| 201 |
+
labels = features
|
| 202 |
+
angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False)
|
| 203 |
+
zh_vals_closed = zh_vals + [zh_vals[0]]
|
| 204 |
+
en_vals_closed = en_vals + [en_vals[0]]
|
| 205 |
+
angles_closed = list(angles) + [angles[0]]
|
| 206 |
+
|
| 207 |
+
ax_radar.plot(angles_closed, zh_vals_closed, marker="o", label="Chinese")
|
| 208 |
+
ax_radar.fill(angles_closed, zh_vals_closed, alpha=0.1)
|
| 209 |
+
|
| 210 |
+
ax_radar.plot(angles_closed, en_vals_closed, marker="o", linestyle="--", label="English")
|
| 211 |
+
ax_radar.fill(angles_closed, en_vals_closed, alpha=0.1)
|
| 212 |
+
|
| 213 |
+
ax_radar.set_xticks(angles)
|
| 214 |
+
ax_radar.set_xticklabels(labels)
|
| 215 |
+
ax_radar.set_yticklabels([])
|
| 216 |
+
ax_radar.set_title("Stylistic profile (radar)")
|
| 217 |
+
ax_radar.legend(loc="upper right", bbox_to_anchor=(1.3, 1.1))
|
| 218 |
+
fig_radar.tight_layout()
|
| 219 |
+
|
| 220 |
+
return translated, zh_stats, en_stats, level, round(power_distance_score, 3), fig_bar, fig_radar
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
# ---------- 6. Gradio 界面 ----------
|
| 224 |
+
|
| 225 |
+
with gr.Blocks(title="Power Distance Checker") as demo:
|
| 226 |
+
gr.Markdown(
|
| 227 |
+
"""
|
| 228 |
+
# 📨 中译英权力距离检测(Power Distance)
|
| 229 |
+
输入一段 **中文信件**,系统会:
|
| 230 |
+
1. 自动翻译为英文
|
| 231 |
+
2. 分析中英文两侧的礼貌度、正式度、委婉程度、命令语气
|
| 232 |
+
3. 给出英文译文的 **权力距离等级:Low / Medium / High**
|
| 233 |
+
4. 用柱状图 + 雷达图展示风格变化
|
| 234 |
+
"""
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
with gr.Row():
|
| 238 |
+
input_box = gr.Textbox(label="输入中文信件", lines=6, placeholder="例如:您好,我想向您反馈近期的项目进度,如有不妥之处,还请您多多指正。")
|
| 239 |
+
|
| 240 |
+
run_btn = gr.Button("分析语气与权力距离")
|
| 241 |
+
|
| 242 |
+
with gr.Row():
|
| 243 |
+
output_en = gr.Textbox(label="英文翻译", lines=6)
|
| 244 |
+
|
| 245 |
+
with gr.Row():
|
| 246 |
+
zh_json = gr.JSON(label="中文侧语气指标(0–1)")
|
| 247 |
+
en_json = gr.JSON(label="英文侧语气指标(0–1)")
|
| 248 |
+
|
| 249 |
+
with gr.Row():
|
| 250 |
+
pd_label = gr.Label(label="Power Distance Level (English translation)")
|
| 251 |
+
pd_score = gr.Number(label="Power Distance Score (0–1)", precision=3)
|
| 252 |
+
|
| 253 |
+
with gr.Row():
|
| 254 |
+
bar_plot = gr.Plot(label="Bar Chart:Chinese vs English")
|
| 255 |
+
radar_plot = gr.Plot(label="Radar Chart:Stylistic Profile")
|
| 256 |
+
|
| 257 |
+
run_btn.click(
|
| 258 |
+
fn=analyze_letter,
|
| 259 |
+
inputs=[input_box],
|
| 260 |
+
outputs=[output_en, zh_json, en_json, pd_label, pd_score, bar_plot, radar_plot],
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
if __name__ == "__main__":
|
| 264 |
+
demo.launch()
|