Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -33,13 +33,27 @@ def auto_download_if_needed(weight_path):
|
|
| 33 |
os.system(f"wget https://github.com/Kiteretsu77/APISR/releases/download/{version_path}")
|
| 34 |
os.system(f"mv {filename} pretrained")
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
def inference(img_path, model_name):
|
| 37 |
try:
|
| 38 |
# Determine device - use GPU if available, otherwise CPU
|
| 39 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 40 |
weight_dtype = torch.float32
|
| 41 |
|
| 42 |
-
#
|
| 43 |
model_configs = {
|
| 44 |
"4xGRL": ("pretrained/4x_APISR_GRL_GAN_generator.pth", load_grl, 4),
|
| 45 |
"4xRRDB": ("pretrained/4x_APISR_RRDB_GAN_generator.pth", load_rrdb, 4),
|
|
@@ -53,13 +67,19 @@ def inference(img_path, model_name):
|
|
| 53 |
weight_path, loader_func, scale = model_configs[model_name]
|
| 54 |
auto_download_if_needed(weight_path)
|
| 55 |
|
| 56 |
-
# Load model
|
| 57 |
-
|
| 58 |
-
weight_path,
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
print(f"Processing {img_path} on {device}")
|
| 65 |
print(f"Current time: {datetime.datetime.now(pytz.timezone('US/Eastern'))}")
|
|
|
|
| 33 |
os.system(f"wget https://github.com/Kiteretsu77/APISR/releases/download/{version_path}")
|
| 34 |
os.system(f"mv {filename} pretrained")
|
| 35 |
|
| 36 |
+
def load_model_with_device(loader_func, weight_path, scale, device):
|
| 37 |
+
# First load the state dict
|
| 38 |
+
state_dict = torch.load(weight_path, map_location=device)
|
| 39 |
+
|
| 40 |
+
# Initialize the model
|
| 41 |
+
generator = loader_func(weight_path, scale=scale)
|
| 42 |
+
|
| 43 |
+
# Load the state dict and move to device
|
| 44 |
+
if hasattr(generator, 'load_state_dict'):
|
| 45 |
+
generator.load_state_dict(state_dict)
|
| 46 |
+
generator = generator.to(device)
|
| 47 |
+
|
| 48 |
+
return generator
|
| 49 |
+
|
| 50 |
def inference(img_path, model_name):
|
| 51 |
try:
|
| 52 |
# Determine device - use GPU if available, otherwise CPU
|
| 53 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 54 |
weight_dtype = torch.float32
|
| 55 |
|
| 56 |
+
# Model configurations
|
| 57 |
model_configs = {
|
| 58 |
"4xGRL": ("pretrained/4x_APISR_GRL_GAN_generator.pth", load_grl, 4),
|
| 59 |
"4xRRDB": ("pretrained/4x_APISR_RRDB_GAN_generator.pth", load_rrdb, 4),
|
|
|
|
| 67 |
weight_path, loader_func, scale = model_configs[model_name]
|
| 68 |
auto_download_if_needed(weight_path)
|
| 69 |
|
| 70 |
+
# Load model and move to appropriate device
|
| 71 |
+
try:
|
| 72 |
+
generator = load_model_with_device(loader_func, weight_path, scale, device)
|
| 73 |
+
except RuntimeError as e:
|
| 74 |
+
if "out of memory" in str(e):
|
| 75 |
+
# If we run out of CUDA memory, try loading on CPU instead
|
| 76 |
+
device = torch.device('cpu')
|
| 77 |
+
generator = load_model_with_device(loader_func, weight_path, scale, device)
|
| 78 |
+
else:
|
| 79 |
+
raise e
|
| 80 |
+
|
| 81 |
+
generator = generator.to(dtype=weight_dtype)
|
| 82 |
+
generator.eval() # Set to evaluation mode
|
| 83 |
|
| 84 |
print(f"Processing {img_path} on {device}")
|
| 85 |
print(f"Current time: {datetime.datetime.now(pytz.timezone('US/Eastern'))}")
|