Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,6 +10,11 @@ import zipfile
|
|
| 10 |
from io import BytesIO
|
| 11 |
import re
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
# Voice model
|
| 14 |
VOICE_MODEL = "tts_models/en/vctk/vits"
|
| 15 |
|
|
@@ -106,87 +111,88 @@ SPEAKER_METADATA = {
|
|
| 106 |
273: { "age": 18, "gender": "F", "accent": "English"}
|
| 107 |
}
|
| 108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
for sid, data in SPEAKER_METADATA.items()
|
| 115 |
-
]
|
| 116 |
-
|
| 117 |
-
# VCTK model (multi-speaker)
|
| 118 |
-
MODEL_NAME = "tts_models/en/vctk/vits"
|
| 119 |
-
tts = TTS(model_name=MODEL_NAME, progress_bar=False, gpu=False)
|
| 120 |
-
|
| 121 |
-
# Extract plain text from docx, ignoring hyperlinks
|
| 122 |
-
def extract_text_ignoring_hyperlinks(docx_file):
|
| 123 |
-
doc = Document(docx_file.name)
|
| 124 |
-
text_blocks = []
|
| 125 |
-
for para in doc.paragraphs:
|
| 126 |
-
# Remove hyperlinks using regex or by inspecting runs
|
| 127 |
-
if para.text.strip():
|
| 128 |
-
clean_text = re.sub(r'https?://\S+', '', para.text)
|
| 129 |
-
text_blocks.append(clean_text.strip())
|
| 130 |
-
return text_blocks
|
| 131 |
-
|
| 132 |
-
# Generate sample audio for preview
|
| 133 |
-
def generate_sample_audio(sample_text, selected_speaker):
|
| 134 |
-
if not sample_text.strip():
|
| 135 |
-
raise gr.Error("Sample text cannot be empty.")
|
| 136 |
-
sid = selected_speaker.split(" ")[0] # Extract speaker ID
|
| 137 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_wav:
|
| 138 |
-
|
| 139 |
return tmp_wav.name
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
| 146 |
try:
|
| 147 |
-
for
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
| 153 |
except Exception as e:
|
| 154 |
-
print("
|
| 155 |
-
|
| 156 |
-
# Zip the results
|
| 157 |
-
zip_buffer = BytesIO()
|
| 158 |
-
with zipfile.ZipFile(zip_buffer, "w") as zipf:
|
| 159 |
-
for wav_path in audio_files:
|
| 160 |
-
zipf.write(wav_path, arcname=os.path.basename(wav_path))
|
| 161 |
-
zip_buffer.seek(0)
|
| 162 |
-
|
| 163 |
-
# Save the zip temporarily for download
|
| 164 |
-
final_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip")
|
| 165 |
-
final_zip.write(zip_buffer.read())
|
| 166 |
-
final_zip.close()
|
| 167 |
-
return final_zip.name
|
| 168 |
-
|
| 169 |
-
# Gradio UI
|
| 170 |
-
with gr.Blocks() as interface:
|
| 171 |
-
gr.Markdown("""# Multi-Paragraph Voiceover Generator
|
| 172 |
-
Upload a `.docx` file and convert each paragraph to audio. You can also try a short sample first.
|
| 173 |
-
""")
|
| 174 |
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
-
|
| 180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
with gr.Row():
|
| 183 |
-
|
| 184 |
-
|
|
|
|
| 185 |
|
| 186 |
-
|
| 187 |
|
| 188 |
-
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
if __name__ == "__main__":
|
| 192 |
-
|
|
|
|
|
|
|
|
|
| 10 |
from io import BytesIO
|
| 11 |
import re
|
| 12 |
|
| 13 |
+
from pydub import AudioSegment
|
| 14 |
+
|
| 15 |
+
final_audio = AudioSegment.empty()
|
| 16 |
+
|
| 17 |
+
|
| 18 |
# Voice model
|
| 19 |
VOICE_MODEL = "tts_models/en/vctk/vits"
|
| 20 |
|
|
|
|
| 111 |
273: { "age": 18, "gender": "F", "accent": "English"}
|
| 112 |
}
|
| 113 |
|
| 114 |
+
def clean_text(text):
|
| 115 |
+
# Remove hyperlinks
|
| 116 |
+
return re.sub(r'http[s]?://\S+', '', text)
|
| 117 |
+
|
| 118 |
+
def extract_paragraphs_from_docx(docx_file):
|
| 119 |
+
document = Document(docx_file.name)
|
| 120 |
+
paragraphs = [p.text.strip() for p in document.paragraphs if p.text.strip()]
|
| 121 |
+
return [clean_text(p) for p in paragraphs]
|
| 122 |
+
|
| 123 |
+
def list_speaker_choices():
|
| 124 |
+
return [f"{sid} | {meta['gender']} | {meta['accent']}" for sid, meta in speaker_metadata.items()]
|
| 125 |
|
| 126 |
+
def get_speaker_id_from_label(label):
|
| 127 |
+
return label.split('|')[0].strip()
|
| 128 |
|
| 129 |
+
def generate_sample_audio(sample_text, speaker_label):
|
| 130 |
+
speaker_id = get_speaker_id_from_label(speaker_label)
|
| 131 |
+
model = TTS("tts_models/multilingual/multi-dataset/your_model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_wav:
|
| 133 |
+
model.tts_to_file(text=sample_text, speaker="p"+speaker_id, file_path=tmp_wav.name)
|
| 134 |
return tmp_wav.name
|
| 135 |
|
| 136 |
+
def generate_audio(docx_file, speaker_label):
|
| 137 |
+
speaker_id = get_speaker_id_from_label(speaker_label)
|
| 138 |
+
model = TTS("tts_models/multilingual/multi-dataset/your_model")
|
| 139 |
+
|
| 140 |
+
paragraphs = extract_paragraphs_from_docx(docx_file)
|
| 141 |
+
combined_audio = AudioSegment.empty()
|
| 142 |
+
temp_files = []
|
| 143 |
+
|
| 144 |
try:
|
| 145 |
+
for idx, para in enumerate(paragraphs):
|
| 146 |
+
tmp = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
| 147 |
+
model.tts_to_file(text=para, speaker="p"+speaker_id, file_path=tmp.name)
|
| 148 |
+
audio_chunk = AudioSegment.from_wav(tmp.name)
|
| 149 |
+
combined_audio += audio_chunk
|
| 150 |
+
temp_files.append(tmp.name)
|
| 151 |
+
tmp.close()
|
| 152 |
+
|
| 153 |
except Exception as e:
|
| 154 |
+
print("Generation interrupted. Saving partial output.", e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
+
output_dir = tempfile.mkdtemp()
|
| 157 |
+
final_output_path = os.path.join(output_dir, "final_output.wav")
|
| 158 |
+
combined_audio.export(final_output_path, format="wav")
|
| 159 |
+
|
| 160 |
+
zip_path = os.path.join(output_dir, "output.zip")
|
| 161 |
+
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
| 162 |
+
zipf.write(final_output_path, arcname="final_output.wav")
|
| 163 |
|
| 164 |
+
for f in temp_files:
|
| 165 |
+
os.remove(f)
|
| 166 |
+
|
| 167 |
+
return zip_path
|
| 168 |
+
|
| 169 |
+
# --- UI ---
|
| 170 |
+
speaker_choices = list_speaker_choices()
|
| 171 |
+
|
| 172 |
+
with gr.Blocks() as demo:
|
| 173 |
+
gr.Markdown("## 📄 TTS Voice Generator with Paragraph-Wise Processing")
|
| 174 |
+
|
| 175 |
+
with gr.Row():
|
| 176 |
+
speaker_dropdown = gr.Dropdown(label="Select Voice", choices=speaker_choices)
|
| 177 |
|
| 178 |
with gr.Row():
|
| 179 |
+
sample_textbox = gr.Textbox(label="Enter Sample Text (Max 500 characters)", max_lines=5, max_chars=500)
|
| 180 |
+
sample_button = gr.Button("Generate Sample")
|
| 181 |
+
clear_button = gr.Button("Clear Sample")
|
| 182 |
|
| 183 |
+
sample_audio = gr.Audio(label="Sample Output", type="filepath")
|
| 184 |
|
| 185 |
+
sample_button.click(fn=generate_sample_audio, inputs=[sample_textbox, speaker_dropdown], outputs=[sample_audio])
|
| 186 |
+
clear_button.click(fn=lambda: None, inputs=[], outputs=[sample_audio])
|
| 187 |
+
|
| 188 |
+
with gr.Row():
|
| 189 |
+
docx_input = gr.File(label="Upload DOCX File", file_types=[".docx"])
|
| 190 |
+
generate_button = gr.Button("Generate Full Audio")
|
| 191 |
+
download_output = gr.File(label="Download Output Zip")
|
| 192 |
+
|
| 193 |
+
generate_button.click(fn=generate_audio, inputs=[docx_input, speaker_dropdown], outputs=[download_output])
|
| 194 |
|
| 195 |
if __name__ == "__main__":
|
| 196 |
+
demo.launch()
|
| 197 |
+
|
| 198 |
+
|