Spaces:
Runtime error
Runtime error
Commit
·
ef6dece
1
Parent(s):
c060c61
Upload 2 files
Browse files- .gitattributes +1 -0
- app.py +34 -0
- dataset.csv +3 -0
.gitattributes
CHANGED
|
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
embs.txt filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
embs.txt filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
dataset.csv filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import BertTokenizer, BertModel
|
| 2 |
+
import torch
|
| 3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
+
import time
|
| 7 |
+
|
| 8 |
+
loaded_model = BertModel.from_pretrained('model')
|
| 9 |
+
loaded_tokenizer = BertTokenizer.from_pretrained('tokenizer')
|
| 10 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def filter_by_ganre(df: pd.DataFrame, ganre_list: list):
|
| 14 |
+
filtered_df = df[df['ganres'].apply(lambda x: any(g in ganre_list for g in(x)))]
|
| 15 |
+
return filtered_df
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
end_time = time.time()
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def recommendation(df: pd.DataFrame, embeddings:np.array, user_text: str, n=10):
|
| 22 |
+
start_time = time.time()
|
| 23 |
+
tokens = loaded_tokenizer(user_text, return_tensors="pt", padding=True, truncation=True)
|
| 24 |
+
loaded_model.to(device)
|
| 25 |
+
loaded_model.eval()
|
| 26 |
+
with torch.no_grad():
|
| 27 |
+
tokens = {key: value.to(loaded_model.device) for key, value in tokens.items()}
|
| 28 |
+
outputs = loaded_model(**tokens)
|
| 29 |
+
user_embedding = output.last_hidden_state.mean(dim=1).squeeze().cpu().detach().numpy()
|
| 30 |
+
cosine_similarities = cosine_similarity(embeddings, user_embedding.reshape(1, -1))
|
| 31 |
+
df_res = pd.DataFrame(cosine_similarities.ravel(), columns=['cos_sim']).sort_values('cos_sim', ascending=False)
|
| 32 |
+
dict_topn = df_res.iloc[:n, :].cos_sim.to_dict()
|
| 33 |
+
end_time = time.time()
|
| 34 |
+
return dict_topn
|
dataset.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f6c10dbf7a899fbf0553bf6cab5fd11abf35cf224e4e6e4f7843fdd19144c550
|
| 3 |
+
size 19266108
|