Spaces:
Running
Running
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer | |
| from peft import LoraConfig, get_peft_model | |
| model_id = "mistralai/Mistral-7B-Instruct-v0.2" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| load_in_4bit=True, | |
| device_map="auto" | |
| ) | |
| lora_config = LoraConfig( | |
| r=8, | |
| lora_alpha=16, | |
| target_modules=["q_proj", "v_proj"], | |
| lora_dropout=0.05, | |
| task_type="CAUSAL_LM" | |
| ) | |
| model = get_peft_model(model, lora_config) | |
| def tokenize(batch): | |
| return tokenizer(batch["text"], truncation=True, padding="max_length", max_length=256) | |
| dataset = dataset.map(tokenize, batched=True) | |
| args = TrainingArguments( | |
| output_dir="./lora-output", | |
| per_device_train_batch_size=1, | |
| gradient_accumulation_steps=4, | |
| num_train_epochs=1, | |
| fp16=True, | |
| logging_steps=10, | |
| save_strategy="epoch" | |
| ) | |
| trainer = Trainer( | |
| model=model, | |
| args=args, | |
| train_dataset=dataset | |
| ) | |
| trainer.train() | |