File size: 13,845 Bytes
a7ee00a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
"""SHARP inference utilities (PLY export only).

This module intentionally does *not* implement MP4/video rendering.
It provides a small, Spaces/ZeroGPU-friendly wrapper that:
- Caches model weights and predictor construction across requests.
- Runs SHARP inference and exports a canonical `.ply`.

Public API (used by the Gradio app):
- predict_to_ply_gpu(...)
"""

from __future__ import annotations

import os
import threading
import time
import uuid
from dataclasses import dataclass
from pathlib import Path
from typing import Final

import torch

try:
    import spaces
except Exception:  # pragma: no cover
    spaces = None  # type: ignore[assignment]

try:
    # Prefer HF cache / Hub downloads (works with Spaces `preload_from_hub`).
    from huggingface_hub import hf_hub_download, try_to_load_from_cache
except Exception:  # pragma: no cover
    hf_hub_download = None  # type: ignore[assignment]
    try_to_load_from_cache = None  # type: ignore[assignment]

from sharp.cli.predict import DEFAULT_MODEL_URL, predict_image
from sharp.models import PredictorParams, create_predictor
from sharp.utils import io
from sharp.utils.gaussians import save_ply

# -----------------------------------------------------------------------------
# Helpers
# -----------------------------------------------------------------------------


def _now_ms() -> int:
    return int(time.time() * 1000)


def _ensure_dir(path: Path) -> Path:
    path.mkdir(parents=True, exist_ok=True)
    return path


def _make_even(x: int) -> int:
    return x if x % 2 == 0 else x + 1


def _select_device(preference: str = "auto") -> torch.device:
    """Select the best available device for inference (CPU/CUDA/MPS)."""
    if preference not in {"auto", "cpu", "cuda", "mps"}:
        raise ValueError("device preference must be one of: auto|cpu|cuda|mps")

    if preference == "cpu":
        return torch.device("cpu")
    if preference == "cuda":
        return torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if preference == "mps":
        return torch.device("mps" if torch.backends.mps.is_available() else "cpu")

    # auto
    if torch.cuda.is_available():
        return torch.device("cuda")
    if torch.backends.mps.is_available():
        return torch.device("mps")
    return torch.device("cpu")


# -----------------------------------------------------------------------------
# Prediction outputs
# -----------------------------------------------------------------------------


@dataclass(frozen=True, slots=True)
class PredictionOutputs:
    """Outputs of SHARP inference."""

    ply_path: Path


# -----------------------------------------------------------------------------
# Model wrapper
# -----------------------------------------------------------------------------


class ModelWrapper:
    """Cached SHARP model wrapper for Gradio/Spaces."""

    def __init__(
        self,
        *,
        outputs_dir: str | Path = "outputs",
        checkpoint_url: str = DEFAULT_MODEL_URL,
        checkpoint_path: str | Path | None = None,
        device_preference: str = "auto",
        keep_model_on_device: bool | None = None,
        hf_repo_id: str | None = None,
        hf_filename: str | None = None,
        hf_revision: str | None = None,
    ) -> None:
        self.outputs_dir = _ensure_dir(Path(outputs_dir))
        self.checkpoint_url = checkpoint_url

        env_ckpt = os.getenv("SHARP_CHECKPOINT_PATH") or os.getenv("SHARP_CHECKPOINT")
        if checkpoint_path:
            self.checkpoint_path = Path(checkpoint_path)
        elif env_ckpt:
            self.checkpoint_path = Path(env_ckpt)
        else:
            self.checkpoint_path = None

        # Optional Hugging Face Hub fallback (useful when direct CDN download fails).
        self.hf_repo_id = hf_repo_id or os.getenv("SHARP_HF_REPO_ID", "apple/Sharp")
        self.hf_filename = hf_filename or os.getenv(
            "SHARP_HF_FILENAME", "sharp_2572gikvuh.pt"
        )
        self.hf_revision = hf_revision or os.getenv("SHARP_HF_REVISION") or None

        self.device_preference = device_preference

        # For ZeroGPU, it's safer to not keep large tensors on CUDA across calls.
        if keep_model_on_device is None:
            keep_env = (
                os.getenv("SHARP_KEEP_MODEL_ON_DEVICE")
            )
            self.keep_model_on_device = keep_env == "1"
        else:
            self.keep_model_on_device = keep_model_on_device

        self._lock = threading.RLock()
        self._predictor: torch.nn.Module | None = None
        self._predictor_device: torch.device | None = None
        self._state_dict: dict | None = None

    def has_cuda(self) -> bool:
        return torch.cuda.is_available()

    def _load_state_dict(self) -> dict:
        with self._lock:
            if self._state_dict is not None:
                return self._state_dict

            # 1) Explicit local checkpoint path
            if self.checkpoint_path is not None:
                try:
                    self._state_dict = torch.load(
                        self.checkpoint_path,
                        weights_only=True,
                        map_location="cpu",
                    )
                    return self._state_dict
                except Exception as e:
                    raise RuntimeError(
                        "Failed to load SHARP checkpoint from local path.\n\n"
                        f"Path:\n  {self.checkpoint_path}\n\n"
                        f"Original error:\n  {type(e).__name__}: {e}"
                    ) from e

            # 2) HF cache (no-network): best match for Spaces `preload_from_hub`.
            hf_cache_error: Exception | None = None
            if try_to_load_from_cache is not None:
                try:
                    cached = try_to_load_from_cache(
                        repo_id=self.hf_repo_id,
                        filename=self.hf_filename,
                        revision=self.hf_revision,
                        repo_type="model",
                    )
                except TypeError:
                    cached = try_to_load_from_cache(self.hf_repo_id, self.hf_filename)  # type: ignore[misc]

                try:
                    if isinstance(cached, str) and Path(cached).exists():
                        self._state_dict = torch.load(
                            cached, weights_only=True, map_location="cpu"
                        )
                        return self._state_dict
                except Exception as e:
                    hf_cache_error = e

            # 3) HF Hub download (reuse cache when available; may download otherwise).
            hf_error: Exception | None = None
            if hf_hub_download is not None:
                # Attempt "local only" mode if supported (avoids network).
                try:
                    import inspect

                    if "local_files_only" in inspect.signature(hf_hub_download).parameters:
                        ckpt_path = hf_hub_download(
                            repo_id=self.hf_repo_id,
                            filename=self.hf_filename,
                            revision=self.hf_revision,
                            local_files_only=True,
                        )
                        if Path(ckpt_path).exists():
                            self._state_dict = torch.load(
                                ckpt_path, weights_only=True, map_location="cpu"
                            )
                            return self._state_dict
                except Exception:
                    pass

                try:
                    ckpt_path = hf_hub_download(
                        repo_id=self.hf_repo_id,
                        filename=self.hf_filename,
                        revision=self.hf_revision,
                    )
                    self._state_dict = torch.load(
                        ckpt_path,
                        weights_only=True,
                        map_location="cpu",
                    )
                    return self._state_dict
                except Exception as e:
                    hf_error = e

            # 4) Default upstream CDN (torch hub cache). Last resort.
            url_error: Exception | None = None
            try:
                self._state_dict = torch.hub.load_state_dict_from_url(
                    self.checkpoint_url,
                    progress=True,
                    map_location="cpu",
                )
                return self._state_dict
            except Exception as e:
                url_error = e

            # If we got here: all options failed.
            hint_lines = [
                "Failed to load SHARP checkpoint.",
                "",
                "Tried (in order):",
                f"  1) HF cache (preload_from_hub): repo_id={self.hf_repo_id}, filename={self.hf_filename}, revision={self.hf_revision or 'None'}",
                f"  2) HF Hub download: repo_id={self.hf_repo_id}, filename={self.hf_filename}, revision={self.hf_revision or 'None'}",
                f"  3) URL (torch hub): {self.checkpoint_url}",
                "",
                "If network access is restricted, set a local checkpoint path:",
                "  - SHARP_CHECKPOINT_PATH=/path/to/sharp_2572gikvuh.pt",
                "",
                "Original errors:",
            ]
            if try_to_load_from_cache is None:
                hint_lines.append("  HF cache: huggingface_hub not installed")
            elif hf_cache_error is not None:
                hint_lines.append(
                    f"  HF cache: {type(hf_cache_error).__name__}: {hf_cache_error}"
                )
            else:
                hint_lines.append("  HF cache: (not found in cache)")

            if hf_hub_download is None:
                hint_lines.append("  HF download: huggingface_hub not installed")
            else:
                hint_lines.append(f"  HF download: {type(hf_error).__name__}: {hf_error}")

            hint_lines.append(f"  URL: {type(url_error).__name__}: {url_error}")

            raise RuntimeError("\n".join(hint_lines))

    def _get_predictor(self, device: torch.device) -> torch.nn.Module:
        with self._lock:
            if self._predictor is None:
                state_dict = self._load_state_dict()
                predictor = create_predictor(PredictorParams())
                predictor.load_state_dict(state_dict)
                predictor.eval()
                self._predictor = predictor
                self._predictor_device = torch.device("cpu")

            assert self._predictor is not None
            assert self._predictor_device is not None

            if self._predictor_device != device:
                self._predictor.to(device)
                self._predictor_device = device

            return self._predictor

    def _maybe_move_model_back_to_cpu(self) -> None:
        if self.keep_model_on_device:
            return
        with self._lock:
            if self._predictor is not None and self._predictor_device is not None:
                if self._predictor_device.type != "cpu":
                    self._predictor.to("cpu")
                    self._predictor_device = torch.device("cpu")
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

    def _make_output_stem(self, input_path: Path) -> str:
        return f"{input_path.stem}-{_now_ms()}-{uuid.uuid4().hex[:8]}"

    def predict_to_ply(self, image_path: str | Path) -> PredictionOutputs:
        """Run SHARP inference and export a .ply file."""
        image_path = Path(image_path)
        if not image_path.exists():
            raise FileNotFoundError(f"Image does not exist: {image_path}")

        device = _select_device(self.device_preference)
        predictor = self._get_predictor(device)

        image_np, _, f_px = io.load_rgb(image_path)
        height, width = image_np.shape[:2]

        with torch.no_grad():
            gaussians = predict_image(predictor, image_np, f_px, device)

        stem = self._make_output_stem(image_path)
        ply_path = self.outputs_dir / f"{stem}.ply"

        # save_ply expects (height, width).
        save_ply(gaussians, f_px, (height, width), ply_path)

        self._maybe_move_model_back_to_cpu()

        return PredictionOutputs(ply_path=ply_path)


# -----------------------------------------------------------------------------
# ZeroGPU entrypoints
# -----------------------------------------------------------------------------
#
# IMPORTANT: Do NOT decorate bound instance methods with `@spaces.GPU` on ZeroGPU.
# The wrapper uses multiprocessing queues and pickles args/kwargs. If `self` is
# included, Python will try to pickle the whole instance. ModelWrapper contains
# a threading.RLock (not pickleable) and the model itself should not be pickled.
#
# Expose module-level functions that accept only pickleable arguments and
# create/cache the ModelWrapper inside the GPU worker process.

DEFAULT_OUTPUTS_DIR: Final[Path] = _ensure_dir(Path(__file__).resolve().parent / "outputs")

_GLOBAL_MODEL: ModelWrapper | None = None
_GLOBAL_MODEL_INIT_LOCK: Final[threading.Lock] = threading.Lock()


def get_global_model(*, outputs_dir: str | Path = DEFAULT_OUTPUTS_DIR) -> ModelWrapper:
    global _GLOBAL_MODEL
    with _GLOBAL_MODEL_INIT_LOCK:
        if _GLOBAL_MODEL is None:
            _GLOBAL_MODEL = ModelWrapper(outputs_dir=outputs_dir)
    return _GLOBAL_MODEL

def predict_to_ply(
    image_path: str | Path,
) -> Path:
    model = get_global_model()
    return model.predict_to_ply(image_path).ply_path


# Export the GPU-wrapped callable (or a no-op wrapper locally).
if spaces is not None:
    predict_to_ply_gpu = spaces.GPU(duration=180)(predict_to_ply)
else:  # pragma: no cover
    predict_to_ply_gpu = predict_to_ply