File size: 12,267 Bytes
56fd0fa
 
5781f0e
 
ceea8f9
 
56fd0fa
 
70b1bfb
 
56fd0fa
5781f0e
 
 
 
 
 
 
 
 
 
 
 
300ab36
ceea8f9
300ab36
 
 
ceea8f9
 
 
 
 
5781f0e
 
 
 
 
 
 
 
 
 
ceea8f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56fd0fa
ceea8f9
 
 
 
 
70b1bfb
ceea8f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5781f0e
ceea8f9
 
 
 
 
 
56fd0fa
ceea8f9
 
 
 
 
 
 
 
 
 
5781f0e
ceea8f9
 
 
 
70b1bfb
ceea8f9
 
56fd0fa
ceea8f9
 
 
 
cbc942b
ceea8f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56fd0fa
ceea8f9
 
 
 
70b1bfb
ceea8f9
 
70b1bfb
ceea8f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56fd0fa
ceea8f9
 
 
 
56fd0fa
ceea8f9
70b1bfb
56fd0fa
 
70b1bfb
 
56fd0fa
ceea8f9
 
56fd0fa
70b1bfb
56fd0fa
 
 
 
 
70b1bfb
 
 
5781f0e
 
 
ceea8f9
5781f0e
70b1bfb
 
56fd0fa
5781f0e
56fd0fa
70b1bfb
56fd0fa
70b1bfb
5781f0e
ceea8f9
5781f0e
ceea8f9
70b1bfb
ceea8f9
 
 
 
56fd0fa
 
 
70b1bfb
56fd0fa
70b1bfb
ceea8f9
70b1bfb
ceea8f9
56fd0fa
 
5781f0e
56fd0fa
ceea8f9
56fd0fa
 
 
ceea8f9
 
 
 
 
 
56fd0fa
ceea8f9
70b1bfb
ceea8f9
56fd0fa
 
 
5781f0e
ceea8f9
 
56fd0fa
 
 
5781f0e
 
ceea8f9
 
 
 
5781f0e
56fd0fa
70b1bfb
56fd0fa
70b1bfb
56fd0fa
 
 
5781f0e
ceea8f9
5781f0e
 
56fd0fa
 
 
ceea8f9
56fd0fa
 
ceea8f9
5781f0e
 
ceea8f9
5781f0e
cbc942b
56fd0fa
70b1bfb
56fd0fa
 
 
 
 
 
70b1bfb
ceea8f9
 
 
 
 
 
 
 
 
 
 
56fd0fa
 
5781f0e
ceea8f9
5781f0e
 
ceea8f9
 
 
 
 
70b1bfb
 
 
 
5781f0e
ceea8f9
5781f0e
70b1bfb
 
56fd0fa
 
70b1bfb
56fd0fa
 
70b1bfb
5781f0e
 
56fd0fa
 
70b1bfb
56fd0fa
ceea8f9
 
 
 
 
 
56fd0fa
 
 
5781f0e
07a7d93
 
56fd0fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import gradio as gr
import os
import sys
import subprocess
import json
import tempfile
from pathlib import Path
from huggingface_hub import snapshot_download
import warnings
warnings.filterwarnings('ignore')

# Setup GLM-TTS environment
def setup_glm_tts():
    """Download and setup GLM-TTS repository"""
    glm_tts_dir = Path("./GLM-TTS")
    
    if not glm_tts_dir.exists():
        print("πŸ“₯ Cloning GLM-TTS repository...")
        subprocess.run(
            ["git", "clone", "https://github.com/zai-org/GLM-TTS.git"],
            check=True
        )
        print("βœ… GLM-TTS repository cloned")
        
        # Install additional requirements
        glm_requirements = glm_tts_dir / "requirements.txt"
        if glm_requirements.exists():
            print("πŸ“¦ Installing GLM-TTS requirements...")
            subprocess.run(
                [sys.executable, "-m", "pip", "install", "-q", "-r", str(glm_requirements)],
                check=False
            )
            print("βœ… GLM-TTS requirements installed")
    
    # Add to Python path
    if str(glm_tts_dir) not in sys.path:
        sys.path.insert(0, str(glm_tts_dir))
    
    return glm_tts_dir

print("πŸ”§ Setting up GLM-TTS environment...")
GLM_TTS_DIR = setup_glm_tts()

# Download models
def download_models():
    """Download GLM-TTS models from HuggingFace"""
    model_dir = Path("./ckpt")
    
    if not model_dir.exists():
        print("πŸ“₯ Downloading GLM-TTS models from HuggingFace (~8.9GB)...")
        print("⏳ This will take several minutes on first run...")
        snapshot_download(
            repo_id="zai-org/GLM-TTS",
            local_dir=str(model_dir),
            local_dir_use_symlinks=False,
            resume_download=True
        )
        print("βœ… Models downloaded successfully!")
    else:
        print("βœ… Models already downloaded")
    
    return model_dir

MODEL_DIR = download_models()

# Create example directory structure
def setup_examples():
    """Setup example directories"""
    example_dir = GLM_TTS_DIR / "examples"
    example_dir.mkdir(exist_ok=True)
    
    prompt_dir = example_dir / "prompt"
    prompt_dir.mkdir(exist_ok=True)
    
    return example_dir, prompt_dir

EXAMPLE_DIR, PROMPT_DIR = setup_examples()

def generate_speech_glmtts(text, ref_audio_path=None, speed=1.0):
    """
    Generate speech using GLM-TTS inference script
    
    Args:
        text: Text to synthesize
        ref_audio_path: Optional reference audio for voice cloning
        speed: Speech speed (not directly supported, for future use)
    
    Returns:
        tuple: (audio_path, status_message)
    """
    try:
        # Create a temporary JSONL file with the input
        temp_jsonl = tempfile.NamedTemporaryFile(
            mode='w',
            suffix='.jsonl',
            dir=EXAMPLE_DIR,
            delete=False
        )
        
        # Prepare data entry
        data_entry = {
            "text": text,
            "prompt_text": "",
            "prompt_audio": ""
        }
        
        # Handle reference audio if provided
        if ref_audio_path and os.path.exists(ref_audio_path):
            # Copy reference audio to prompt directory
            import shutil
            ref_filename = f"ref_{os.path.basename(ref_audio_path)}"
            ref_dest = PROMPT_DIR / ref_filename
            shutil.copy2(ref_audio_path, ref_dest)
            
            data_entry["prompt_audio"] = str(ref_dest)
            print(f"βœ“ Using reference audio: {ref_dest}")
        
        # Write to JSONL
        json.dump(data_entry, temp_jsonl)
        temp_jsonl.write('\n')
        temp_jsonl.close()
        
        jsonl_path = Path(temp_jsonl.name)
        data_name = jsonl_path.stem
        
        print(f"πŸŽ™οΈ Synthesizing: '{text[:100]}...'")
        print(f"πŸ“ Using data file: {data_name}")
        
        # Run GLM-TTS inference
        inference_script = "glmtts_inference.py"
        
        cmd = [
            sys.executable,
            str(inference_script),
            f"--data={data_name}",
            "--exp_name=_gradio_demo",
            "--use_cache"
        ]
        
        print(f"πŸ”„ Running inference...")
        print(f"Command: {' '.join(cmd)}")
        
        # Change to GLM-TTS directory for execution
        result = subprocess.run(
            cmd,
            cwd=str(GLM_TTS_DIR),
            capture_output=True,
            text=True,
            timeout=300  # 5 minute timeout
        )
        
        if result.returncode != 0:
            error_msg = f"Inference failed:\n{result.stderr}\n{result.stdout}"
            print(f"❌ {error_msg}")
            return None, f"❌ Error: {error_msg}"
        
        print("βœ… Inference completed")
        print(f"Output:\n{result.stdout}")
        
        # Find the generated audio file
        output_dir = GLM_TTS_DIR / "outputs" / f"{data_name}_gradio_demo"
        
        if not output_dir.exists():
            return None, f"❌ Output directory not found: {output_dir}"
        
        # Look for .wav files in output directory
        wav_files = list(output_dir.glob("*.wav"))
        
        if not wav_files:
            return None, f"❌ No audio files generated in {output_dir}"
        
        # Return the first wav file found
        output_audio = str(wav_files[0])
        print(f"βœ… Audio generated: {output_audio}")
        
        return output_audio, "βœ… Success! Audio generated successfully."
        
    except subprocess.TimeoutExpired:
        return None, "❌ Error: Inference timeout (>5 minutes). CPU inference is very slow."
    except Exception as e:
        import traceback
        error_msg = f"❌ Error: {str(e)}\n{traceback.format_exc()}"
        print(error_msg)
        return None, error_msg
    finally:
        # Cleanup temp file
        try:
            if os.path.exists(temp_jsonl.name):
                os.unlink(temp_jsonl.name)
        except:
            pass

# Gradio interface
def generate_speech(text, ref_audio, speed):
    """Gradio interface function"""
    
    if not text or len(text.strip()) == 0:
        return None, "⚠️ Please enter text to synthesize"
    
    # Call GLM-TTS
    audio_path, message = generate_speech_glmtts(
        text=text,
        ref_audio_path=ref_audio,
        speed=speed
    )
    
    return audio_path, message

# Create Gradio Interface
with gr.Blocks(
    title="GLM-TTS Voice Cloning",
    theme=gr.themes.Soft(),
    css="""
    .gradio-container {max-width: 1200px !important}
    .status-box {font-family: monospace; font-size: 11px; max-height: 400px; overflow-y: auto;}
    """
) as demo:
    
    gr.Markdown("""
    # πŸŽ™οΈ GLM-TTS: Zero-Shot Voice Cloning & Text-to-Speech
    
    **State-of-the-art voice cloning** with just 3-10 seconds of audio!
    
    ### ⚑ Features:
    - 🎯 **Zero-shot cloning** - Clone any voice without training
    - 🌏 **Bilingual** - Excellent Chinese & good English support  
    - 🎭 **Emotion control** - Natural & expressive speech
    - ⚑ **High quality** - Best-in-class among open-source (CER: 0.89)
    
    ### ⚠️ Important Notes:
    - **CPU inference is VERY slow** (5-15 minutes per generation)
    - **First generation takes longer** as models initialize
    - For production use, **GPU is strongly recommended**
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            text_input = gr.Textbox(
                label="πŸ“ Text to Synthesize",
                placeholder="Enter text here (Chinese or English)...\n\nExample: Hello! This is GLM-TTS voice cloning.",
                lines=6,
                value="Hello! This is GLM-TTS, a powerful text-to-speech system with zero-shot voice cloning."
            )
            
            with gr.Accordion("🎡 Voice Cloning (Optional)", open=True):
                ref_audio_input = gr.Audio(
                    label="Reference Audio (3-10 seconds)",
                    type="filepath",
                    sources=["upload", "microphone"]
                )
                gr.Markdown("""
                *Upload audio of the voice you want to clone.*
                - **Leave empty for default voice**
                - **3-10 seconds recommended**
                - **Clear audio with minimal noise**
                """)
            
            with gr.Accordion("βš™οΈ Settings", open=False):
                speed_slider = gr.Slider(
                    label="Speech Speed (not yet implemented)",
                    minimum=0.5,
                    maximum=2.0,
                    value=1.0,
                    step=0.1,
                    interactive=False,
                    info="Speed control coming soon"
                )
            
            generate_btn = gr.Button("🎡 Generate Speech", variant="primary", size="lg")
            
            gr.Markdown("""
            ### πŸ’‘ Tips:
            - First generation will take **10-15 minutes** on CPU
            - Subsequent generations: **5-10 minutes**
            - Be patient - the quality is worth the wait!
            """)
        
        with gr.Column(scale=1):
            audio_output = gr.Audio(
                label="πŸ”Š Generated Speech",
                type="filepath"
            )
            status_output = gr.Textbox(
                label="πŸ“Š Status / Logs",
                lines=12,
                interactive=False,
                elem_classes=["status-box"]
            )
    
    # Examples
    gr.Markdown("### πŸ“š Try These Examples")
    gr.Examples(
        examples=[
            ["Hello! Welcome to GLM-TTS.", None, 1.0],
            ["ζ¬’θΏŽδ½Ώη”¨GLM-TTS语音合成系统!", None, 1.0],
            ["Artificial intelligence is transforming our world.", None, 1.0],
            ["δΊΊε·₯ζ™Ίθƒ½ζ­£εœ¨ζ”Ήε˜δΈ–η•Œγ€‚", None, 1.0],
            ["This is a test of zero-shot voice cloning technology.", None, 1.0],
            ["There's a new tool that allows you to clone his voice with just about 10 or 12, maybe 13 or 15 seconds of audio! And it's actually a really good clone! Check this out!", None, 1.0],
        ],
        inputs=[text_input, ref_audio_input, speed_slider],
        outputs=[audio_output, status_output],
        fn=generate_speech,
        cache_examples=False,
    )
    
    gr.Markdown("""
    ---
    ### 🎯 How It Works:
    1. **Enter text** in Chinese or English (or mixed)
    2. **Optional**: Upload 3-10s of reference audio to clone that voice
    3. **Click Generate** and wait (be patient on CPU!)
    4. **Download** your generated audio
    
    ### πŸ’‘ Best Practices:
    - **Reference audio**: Clear, minimal background noise
    - **Length**: 3-10 seconds is optimal for cloning
    - **Languages**: Chinese is strongest, English is well-supported
    - **Mixed text**: Can handle Chinese-English in same sentence
    
    ### πŸ”— Resources:
    - [GitHub Repository](https://github.com/zai-org/GLM-TTS)
    - [Model on HuggingFace](https://huggingface.co/zai-org/GLM-TTS)
    - [Official Demo](https://audio.z.ai)
    
    ### πŸ“Š Performance Benchmarks:
    | Metric | GLM-TTS | GLM-TTS-RL |
    |--------|---------|------------|
    | CER ↓  | 1.03    | **0.89** (best open-source) |
    | SIM ↑  | 76.1    | 76.4 |
    
    ### πŸ“„ Citation:
    ```bibtex
    @misc{glmtts2025,
      title={GLM-TTS: Controllable & Emotion-Expressive Zero-shot TTS},
      author={CogAudio Group, Zhipu AI},
      year={2025}
    }
    ```
    """)
    
    # Connect button
    generate_btn.click(
        fn=generate_speech,
        inputs=[text_input, ref_audio_input, speed_slider],
        outputs=[audio_output, status_output],
        api_name="generate"
    )

# Launch
if __name__ == "__main__":
    print("πŸš€ Starting Gradio interface...")
    print(f"πŸ“ GLM-TTS directory: {GLM_TTS_DIR}")
    print(f"πŸ“ Model directory: {MODEL_DIR}")
    print(f"πŸ“ Example directory: {EXAMPLE_DIR}")
    
    demo.queue(max_size=5)  # Limit queue size for CPU
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True,
        ssr_mode=False  # Disable SSR to prevent asyncio event loop cleanup errors
    )