Spaces:
Runtime error
Runtime error
dylanglenister
commited on
Commit
·
833527f
1
Parent(s):
3d81965
FEAT: Reranker file.
Browse filesUses an nvidia reranker model to find the most relevant information.
- src/config/settings.py +3 -0
- src/services/reranker.py +70 -0
src/config/settings.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
# src/config/settings.py
|
| 2 |
import os
|
| 3 |
|
|
|
|
| 4 |
class Settings:
|
| 5 |
"""Application-wide settings."""
|
| 6 |
# Memory settings
|
|
@@ -9,6 +10,8 @@ class Settings:
|
|
| 9 |
SEMANTIC_CONTEXT_SIZE: int = 17
|
| 10 |
SIMILARITY_THRESHOLD: float = 0.15
|
| 11 |
EMBEDDING_MODEL_NAME: str = "MedEmbed-large-v0.1"
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# Safety Guard settings
|
| 14 |
SAFETY_GUARD_ENABLED: bool = os.getenv("SAFETY_GUARD_ENABLED", "true").lower() == "true"
|
|
|
|
| 1 |
# src/config/settings.py
|
| 2 |
import os
|
| 3 |
|
| 4 |
+
|
| 5 |
class Settings:
|
| 6 |
"""Application-wide settings."""
|
| 7 |
# Memory settings
|
|
|
|
| 10 |
SEMANTIC_CONTEXT_SIZE: int = 17
|
| 11 |
SIMILARITY_THRESHOLD: float = 0.15
|
| 12 |
EMBEDDING_MODEL_NAME: str = "MedEmbed-large-v0.1"
|
| 13 |
+
NVIDIA_RERANKER_MODEL: str = "rerank-qa-mistral-4b"
|
| 14 |
+
NVIDIA_RERANKER_ENDPOINT: str = "" # TODO
|
| 15 |
|
| 16 |
# Safety Guard settings
|
| 17 |
SAFETY_GUARD_ENABLED: bool = os.getenv("SAFETY_GUARD_ENABLED", "true").lower() == "true"
|
src/services/reranker.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# src/services/reranker.py
|
| 2 |
+
|
| 3 |
+
from src.config.settings import settings
|
| 4 |
+
from src.models.information import InfoChunk
|
| 5 |
+
from src.utils.logger import logger
|
| 6 |
+
from src.utils.rotator import APIKeyRotator, robust_post_json
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
async def rerank_documents(
|
| 10 |
+
query: str,
|
| 11 |
+
documents: list[InfoChunk],
|
| 12 |
+
rotator: APIKeyRotator,
|
| 13 |
+
top_k: int = 3,
|
| 14 |
+
) -> list[InfoChunk]:
|
| 15 |
+
"""
|
| 16 |
+
Reranks a list of documents based on a query using the NVIDIA Rerank API.
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
query: The user's query string.
|
| 20 |
+
documents: A list of InfoChunk objects retrieved from the initial search.
|
| 21 |
+
rotator: The API key rotator for NVIDIA services.
|
| 22 |
+
top_k: The final number of documents to return after reranking.
|
| 23 |
+
|
| 24 |
+
Returns:
|
| 25 |
+
A sorted list of the top_k most relevant InfoChunk objects.
|
| 26 |
+
Returns the original list sliced to top_k if reranking fails.
|
| 27 |
+
"""
|
| 28 |
+
if not documents:
|
| 29 |
+
return []
|
| 30 |
+
|
| 31 |
+
headers = {
|
| 32 |
+
"Authorization": f"Bearer {rotator.get_key() or ''}",
|
| 33 |
+
"Accept": "application/json",
|
| 34 |
+
"Content-Type": "application/json",
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
passages = [doc.content for doc in documents]
|
| 38 |
+
|
| 39 |
+
payload = {
|
| 40 |
+
"model": settings.NVIDIA_RERANKER_MODEL,
|
| 41 |
+
"query": query,
|
| 42 |
+
"passages": passages,
|
| 43 |
+
"top_n": top_k,
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
try:
|
| 47 |
+
# Use the existing robust helper for consistency
|
| 48 |
+
data = await robust_post_json(settings.NVIDIA_RERANKER_ENDPOINT, headers, payload, rotator)
|
| 49 |
+
results = data.get("results", [])
|
| 50 |
+
|
| 51 |
+
if not results:
|
| 52 |
+
logger().warning("Reranking returned no results, falling back to original order.")
|
| 53 |
+
return documents[:top_k]
|
| 54 |
+
|
| 55 |
+
# Create a mapping of original document content to the document object
|
| 56 |
+
doc_map = {doc.content: doc for doc in documents}
|
| 57 |
+
|
| 58 |
+
# Reconstruct the sorted list of documents based on rerank results
|
| 59 |
+
reranked_docs = []
|
| 60 |
+
for result in sorted(results, key=lambda x: x["rank"]):
|
| 61 |
+
if result["passage"] in doc_map:
|
| 62 |
+
reranked_docs.append(doc_map[result["passage"]])
|
| 63 |
+
|
| 64 |
+
return reranked_docs
|
| 65 |
+
|
| 66 |
+
except Exception as e:
|
| 67 |
+
logger().error(f"An unexpected error occurred during reranking: {e}")
|
| 68 |
+
|
| 69 |
+
# Fallback: return the top_k documents from the original list
|
| 70 |
+
return documents[:top_k]
|