Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,9 +2,15 @@ import streamlit as st
|
|
| 2 |
import pandas as pd
|
| 3 |
import re
|
| 4 |
import string
|
|
|
|
| 5 |
from sklearn.model_selection import train_test_split
|
| 6 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 7 |
from sklearn.naive_bayes import MultinomialNB
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Title & Intro
|
| 10 |
st.set_page_config(page_title="SMS Spam Detection", layout="centered")
|
|
@@ -27,7 +33,6 @@ df['label'] = df['label'].map({'ham': 0, 'spam': 1})
|
|
| 27 |
|
| 28 |
# --- Train Model ---
|
| 29 |
X_train, X_test, y_train, y_test = train_test_split(df['message'], df['label'], test_size=0.2, random_state=42)
|
| 30 |
-
|
| 31 |
vectorizer = TfidfVectorizer()
|
| 32 |
X_train_tfidf = vectorizer.fit_transform(X_train)
|
| 33 |
|
|
@@ -51,6 +56,18 @@ def predict_spam(text):
|
|
| 51 |
prediction = model.predict(vector)
|
| 52 |
return "Spam" if prediction[0] == 1 else "Not Spam (Ham)"
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
# --- Input ---
|
| 55 |
user_input = st.text_area("✉️ Enter your SMS message here:")
|
| 56 |
|
|
@@ -58,11 +75,25 @@ if st.button("Check Message"):
|
|
| 58 |
if user_input.strip() == "":
|
| 59 |
st.warning("⚠️ Please enter a message.")
|
| 60 |
else:
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
else:
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
# --- Dataset preview ---
|
| 68 |
with st.expander("📄 View sample dataset"):
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import re
|
| 4 |
import string
|
| 5 |
+
import google.generativeai as genai
|
| 6 |
from sklearn.model_selection import train_test_split
|
| 7 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 8 |
from sklearn.naive_bayes import MultinomialNB
|
| 9 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 10 |
+
|
| 11 |
+
# --- Set Gemini API Key ---
|
| 12 |
+
genai.configure(api_key="AIzaSyCVRGVxIe1vESoAgykgHWOej-jZxiU-RKE") # <-- Replace this with your actual Gemini API key
|
| 13 |
+
gemini_model = genai.GenerativeModel("gemini-pro")
|
| 14 |
|
| 15 |
# Title & Intro
|
| 16 |
st.set_page_config(page_title="SMS Spam Detection", layout="centered")
|
|
|
|
| 33 |
|
| 34 |
# --- Train Model ---
|
| 35 |
X_train, X_test, y_train, y_test = train_test_split(df['message'], df['label'], test_size=0.2, random_state=42)
|
|
|
|
| 36 |
vectorizer = TfidfVectorizer()
|
| 37 |
X_train_tfidf = vectorizer.fit_transform(X_train)
|
| 38 |
|
|
|
|
| 56 |
prediction = model.predict(vector)
|
| 57 |
return "Spam" if prediction[0] == 1 else "Not Spam (Ham)"
|
| 58 |
|
| 59 |
+
# --- Gemini Fallback ---
|
| 60 |
+
def ask_gemini(text):
|
| 61 |
+
prompt = f"""You are an expert SMS spam detector.
|
| 62 |
+
Classify the following message as 'Spam' or 'Not Spam (Ham)'.
|
| 63 |
+
Message: "{text}"
|
| 64 |
+
Reply with only: Spam or Not Spam (Ham)."""
|
| 65 |
+
try:
|
| 66 |
+
response = gemini_model.generate_content(prompt)
|
| 67 |
+
return response.text.strip()
|
| 68 |
+
except Exception as e:
|
| 69 |
+
return f"Error using Gemini: {str(e)}"
|
| 70 |
+
|
| 71 |
# --- Input ---
|
| 72 |
user_input = st.text_area("✉️ Enter your SMS message here:")
|
| 73 |
|
|
|
|
| 75 |
if user_input.strip() == "":
|
| 76 |
st.warning("⚠️ Please enter a message.")
|
| 77 |
else:
|
| 78 |
+
cleaned = clean_text(user_input)
|
| 79 |
+
input_vector = vectorizer.transform([cleaned])
|
| 80 |
+
similarities = cosine_similarity(input_vector, X_train_tfidf)
|
| 81 |
+
max_similarity = similarities.max()
|
| 82 |
+
|
| 83 |
+
# Check similarity threshold (e.g., < 0.3 = unknown message)
|
| 84 |
+
if max_similarity < 0.3:
|
| 85 |
+
st.info("🧠 Message not found in training data. Using Gemini for prediction...")
|
| 86 |
+
gemini_result = ask_gemini(user_input)
|
| 87 |
+
if "spam" in gemini_result.lower():
|
| 88 |
+
st.error("🚫 Gemini says: This message is **SPAM**.")
|
| 89 |
+
else:
|
| 90 |
+
st.success("✅ Gemini says: This message is **NOT SPAM (HAM)**.")
|
| 91 |
else:
|
| 92 |
+
result = predict_spam(user_input)
|
| 93 |
+
if result == "Spam":
|
| 94 |
+
st.error("🚫 This message is classified as **SPAM**.")
|
| 95 |
+
else:
|
| 96 |
+
st.success("✅ This message is classified as **NOT SPAM (HAM)**.")
|
| 97 |
|
| 98 |
# --- Dataset preview ---
|
| 99 |
with st.expander("📄 View sample dataset"):
|