File size: 31,583 Bytes
ec4aa90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
"""
Workflow Orchestrator - Integrates all phases into complete pipeline.
Phase 5: Complete end-to-end workflow with all MCP integrations.
"""

import os
import logging
import asyncio
from typing import Dict, List, Optional
from pathlib import Path

# Phase 1-2: Classification
from src.agents.classifier import CodeClassifier
from src.agents.pattern_integration import PatternMatcherIntegration
from src.utils.file_handler import FileHandler

# Phase 3: Search
from src.search.vector_store import CodeSearchEngine

# Phase 4: Analysis & Transformation
from src.agents.analyzer import CodeAnalyzer
from src.agents.transformer import CodeTransformer

# Phase 5: Testing & GitHub
from src.agents.test_generator import CodeTestGenerator
from src.sandbox.validator import ModalSandboxValidator

# Lazy import to avoid circular dependency
GitHubMCPClient = None

logger = logging.getLogger(__name__)


class ModernizationOrchestrator:
    """
    Orchestrates the complete code modernization workflow.
    Integrates all 5 phases into a seamless pipeline.
    """
    
    def __init__(self, use_intelligent_matcher: bool = True):
        """Initialize orchestrator with all components."""
        logger.info("Initializing ModernizationOrchestrator")
        
        # Phase 1-2 components
        self.use_intelligent_matcher = use_intelligent_matcher
        if use_intelligent_matcher:
            self.pattern_integration = PatternMatcherIntegration(
                use_intelligent_matcher=True,
                cache_dir=".pattern_cache"
            )
            logger.info("Using IntelligentPatternMatcher")
        else:
            self.classifier = CodeClassifier()
            logger.info("Using legacy CodeClassifier")
        
        self.file_handler = FileHandler()
        
        # Phase 3 components
        self.search_engine = None  # Initialized per repo
        
        # Phase 4 components
        self.analyzer = CodeAnalyzer()
        self.transformer = CodeTransformer()
        
        # Phase 5 components
        self.test_generator = CodeTestGenerator()
        self.validator = ModalSandboxValidator()
        
        # Lazy load GitHub client to avoid circular import
        self.github_client = None
        
        logger.info("ModernizationOrchestrator initialized successfully")
    
    async def modernize_repository(
        self,
        repo_path: str,
        target_version: str = "Python 3.14",
        create_pr: bool = False,
        repo_url: Optional[str] = None,
        github_token: Optional[str] = None,
        progress_callback: Optional[callable] = None
    ) -> Dict:
        """
        Complete modernization workflow for a repository.
        
        Args:
            repo_path: Path to repository (ZIP or directory)
            target_version: Target language/framework version
            create_pr: Whether to create GitHub PR
            repo_url: GitHub repository URL (required if create_pr=True)
            github_token: GitHub personal access token (optional, uses .env if not provided)
            progress_callback: Optional callback function for progress updates
        
        Returns:
            Dictionary with complete modernization results
        """
        logger.info(f"Starting modernization for {repo_path}")
        
        def update_progress(phase: str, message: str):
            """Helper to call progress callback if provided."""
            if progress_callback:
                progress_callback(phase, message)
        
        results = {
            "success": False,
            "phases": {},
            "statistics": {},
            "errors": []
        }
        
        try:
            # Phase 1: Extract and discover files
            logger.info("Phase 1: File discovery")
            update_progress("Phase 1", "Extracting and discovering files...")
            
            if repo_path.endswith('.zip'):
                extract_path = self.file_handler.extract_repo(repo_path)
            else:
                extract_path = repo_path
            
            files = self.file_handler.list_code_files(extract_path)
            logger.info(f"Discovered {len(files)} code files")
            update_progress("Phase 1", f"Discovered {len(files)} code files")
            
            results['phases']['discovery'] = {
                "files_found": len(files),
                "repo_path": extract_path
            }
            
            # Phase 2: Classify files
            logger.info("Phase 2: File classification")
            update_progress("Phase 2", "Classifying files with AI pattern detection...")
            
            # Read file contents for intelligent matching
            file_contents = {}
            if self.use_intelligent_matcher:
                logger.info("Reading file contents for intelligent pattern matching...")
                for file_path in files[:50]:  # Limit to 50 files for demo
                    try:
                        full_path = os.path.join(extract_path, file_path)
                        content = self.file_handler.read_file(full_path)
                        if content:
                            file_contents[file_path] = content
                    except Exception as e:
                        logger.warning(f"Could not read {file_path}: {e}")
                
                classifications = self.pattern_integration.classify_files(
                    list(file_contents.keys()), 
                    file_contents
                )
                
                # Get detailed statistics
                analyses = self.pattern_integration.pattern_matcher.analyze_batch(file_contents)
                stats = self.pattern_integration.generate_statistics(analyses)
                
                logger.info(f"Intelligent classification: {stats['modernize_high']} high, "
                          f"{stats['modernize_low']} low, {stats['skip']} skip")
                logger.info(f"Detected {stats['patterns_detected']} patterns across {stats['total_files']} files")
            else:
                classifications = self.classifier.classify_files(files)
                stats = None
            
            modernize_high = [f for f, c in classifications.items() if c == 'modernize_high']
            modernize_low = [f for f, c in classifications.items() if c == 'modernize_low']
            skip_files = [f for f, c in classifications.items() if c == 'skip']
            
            logger.info(f"Classification: {len(modernize_high)} high, {len(modernize_low)} low, {len(skip_files)} skip")
            
            results['phases']['classification'] = {
                "modernize_high": len(modernize_high),
                "modernize_low": len(modernize_low),
                "skip": len(skip_files),
                "classifications": classifications,
                "intelligent_stats": stats if self.use_intelligent_matcher else None
            }
            
            # Phase 3: Semantic search and pattern grouping
            logger.info("Phase 3: Semantic search")
            update_progress("Phase 3", "Building semantic index with LlamaIndex...")
            
            self.search_engine = CodeSearchEngine(persist_dir=None)
            
            # Build index for high-priority files
            files_to_modernize = modernize_high + modernize_low
            if files_to_modernize:
                self.search_engine.build_index(extract_path)  # Build index from repo
                
                # Find pattern groups
                pattern_groups = self._find_pattern_groups(files_to_modernize[:20])
                logger.info(f"Found {len(pattern_groups)} pattern groups")
                
                results['phases']['search'] = {
                    "indexed_files": min(len(files_to_modernize), 100),
                    "pattern_groups": len(pattern_groups)
                }
            else:
                pattern_groups = []
                results['phases']['search'] = {"message": "No files to modernize"}
            
            # Phase 4: Analysis and transformation
            logger.info("Phase 4: Code transformation")
            update_progress("Phase 4", "Analyzing and transforming code...")
            
            transformations = []
            
            # Use intelligent pattern data if available
            if self.use_intelligent_matcher and file_contents:
                logger.info("Using intelligent pattern analysis for transformation")
                
                # Get prioritized files from intelligent matcher
                prioritized = self.pattern_integration.pattern_matcher.prioritize_files(analyses)
                
                # Process top priority files
                files_to_transform = [
                    (fp, analysis) for fp, analysis in prioritized 
                    if analysis.requires_modernization
                ][:10]  # Limit to 10 files for demo
                
                logger.info(f"Processing {len(files_to_transform)} high-priority files with detailed pattern data")
                
                total_files = len(files_to_transform)
                for idx, (file_path, file_analysis) in enumerate(files_to_transform, 1):
                    try:
                        update_progress("Phase 4", f"Transforming file {idx}/{total_files}: {Path(file_path).name}")
                        
                        original_code = file_contents.get(file_path, "")
                        if not original_code:
                            continue
                        
                        # Convert intelligent pattern analysis to transformation plan
                        transformation_plan = self.pattern_integration.get_transformation_plan(file_analysis)
                        
                        # Transform using detailed pattern information
                        modernized_code = await self.transformer.transform_code(
                            file_path,
                            original_code,
                            transformation_plan
                        )
                        
                        transformations.append({
                            "file_path": file_path,
                            "original_code": original_code,
                            "modernized_code": modernized_code,
                            "analysis": transformation_plan,
                            "patterns_addressed": [p['pattern'] for p in transformation_plan['steps']],
                            "pattern_details": file_analysis.patterns  # Include detailed pattern info
                        })
                        
                    except Exception as e:
                        logger.error(f"Error transforming {file_path}: {e}")
                        results['errors'].append(f"Transformation error for {file_path}: {e}")
            else:
                # Fallback to legacy pattern grouping
                logger.info("Using legacy pattern grouping for transformation")
                
                file_to_patterns = {}
                for group in pattern_groups[:5]:  # Limit to 5 groups for demo
                    for file_path in group['files'][:3]:
                        if file_path not in file_to_patterns:
                            file_to_patterns[file_path] = []
                        file_to_patterns[file_path].append(group['pattern_name'])
                
                logger.info(f"Processing {len(file_to_patterns)} unique files")
                
                total_files = len(file_to_patterns)
                for idx, (file_path, patterns) in enumerate(file_to_patterns.items(), 1):
                    try:
                        update_progress("Phase 4", f"Transforming file {idx}/{total_files}: {Path(file_path).name}")
                        
                        full_path = os.path.join(extract_path, file_path)
                        original_code = self.file_handler.read_file(full_path)
                        
                        if not original_code:
                            continue
                        
                        # Analyze patterns
                        combined_pattern = " AND ".join(patterns)
                        analysis = await self.analyzer.analyze_pattern(
                            [file_path],
                            combined_pattern,
                            {file_path: original_code}
                        )
                        
                        # Transform file
                        modernized_code = await self.transformer.transform_code(
                            file_path,
                            original_code,
                            analysis
                        )
                        
                        transformations.append({
                            "file_path": file_path,
                            "original_code": original_code,
                            "modernized_code": modernized_code,
                            "analysis": analysis,
                            "patterns_addressed": patterns
                        })
                            
                    except Exception as e:
                        logger.error(f"Error transforming {file_path}: {e}")
                        results['errors'].append(f"Transformation error for {file_path}: {e}")
            
            logger.info(f"Transformed {len(transformations)} files")
            
            # Save transformed files to output directory
            output_dir = Path("modernized_output")
            output_dir.mkdir(exist_ok=True)
            
            for t in transformations:
                try:
                    # Create subdirectories if needed
                    output_file = output_dir / t['file_path']
                    output_file.parent.mkdir(parents=True, exist_ok=True)
                    
                    # Save modernized code
                    output_file.write_text(t['modernized_code'])
                    logger.info(f"Saved: {output_file}")
                    
                    # Also save original for comparison
                    original_file = output_dir / "original" / t['file_path']
                    original_file.parent.mkdir(parents=True, exist_ok=True)
                    original_file.write_text(t['original_code'])
                    
                except Exception as e:
                    logger.error(f"Error saving {t['file_path']}: {e}")
            
            logger.info(f"Output saved to: {output_dir.absolute()}")
            
            results['phases']['transformation'] = {
                "files_transformed": len(transformations),
                "output_directory": str(output_dir.absolute())
            }
            
            # Store transformations for zip file creation
            results['transformations'] = transformations
            
            # Phase 5: Test generation and validation
            logger.info("Phase 5: Test generation and validation")
            update_progress("Phase 5", "Generating tests and validating in Modal sandbox...")
            
            validation_results = []
            
            # Create tests directory
            tests_dir = output_dir / "tests"
            tests_dir.mkdir(exist_ok=True)
            
            total_tests = min(len(transformations), 10)
            for idx, t in enumerate(transformations[:10], 1):  # Limit to 10 for demo
                try:
                    # Update progress
                    update_progress("Phase 5", f"Testing file {idx}/{total_tests}: {Path(t['file_path']).name}")
                    
                    # Generate tests
                    tests = self.test_generator.generate_tests(
                        t['original_code'],
                        t['modernized_code'],
                        t['file_path']
                    )
                    
                    # Validate and auto-fix export issues
                    if tests:
                        from src.agents.code_validator import validate_and_fix_code
                        
                        # Detect language from file extension
                        file_ext = Path(t['file_path']).suffix.lower()
                        language_map = {
                            '.ts': 'typescript',
                            '.js': 'javascript',
                            '.py': 'python',
                            '.java': 'java'
                        }
                        language = language_map.get(file_ext, 'unknown')
                        
                        # Validate and fix
                        fixed_code, is_valid, issues = validate_and_fix_code(
                            t['modernized_code'],
                            tests,
                            language
                        )
                        
                        if not is_valid:
                            logger.warning(f"Code validation issues for {t['file_path']}: {issues}")
                        
                        if fixed_code != t['modernized_code']:
                            logger.info(f"Auto-fixed export issues in {t['file_path']}")
                            t['modernized_code'] = fixed_code
                            
                            # Re-save the fixed source file
                            output_file = output_dir / Path(t['file_path']).name
                            output_file.write_text(fixed_code)
                    
                    # Save test file
                    if tests:
                        test_file = tests_dir / f"test_{Path(t['file_path']).name}"
                        test_file.write_text(tests)
                        logger.info(f"Saved test: {test_file}")
                    
                    # Validate in sandbox
                    validation = self.validator.validate_transformation(
                        t['original_code'],
                        t['modernized_code'],
                        tests,
                        file_path=t['file_path']
                    )
                    
                    validation['file_path'] = t['file_path']
                    validation_results.append(validation)
                    
                except Exception as e:
                    logger.error(f"Error validating {t['file_path']}: {e}")
                    results['errors'].append(f"Validation error: {e}")
            
            # Calculate aggregate test results
            total_tests = sum(v.get('tests_run', 0) for v in validation_results)
            total_passed = sum(v.get('tests_passed', 0) for v in validation_results)
            # Fix: Only average coverage for files that have coverage data
            coverage_values = [v.get('coverage_percent', 0) for v in validation_results if v.get('coverage_percent', 0) > 0]
            avg_coverage = sum(coverage_values) / len(coverage_values) if coverage_values else 0.0
            
            logger.info(f"Validation: {total_passed}/{total_tests} tests passed, {avg_coverage:.1f}% coverage")
            
            results['phases']['validation'] = {
                "files_validated": len(validation_results),
                "total_tests": total_tests,
                "tests_passed": total_passed,
                "tests_failed": total_tests - total_passed,
                "average_coverage": round(avg_coverage, 2),
                "pass_rate": round(total_passed / max(total_tests, 1) * 100, 2)
            }
            
            # Phase 5b: GitHub PR creation (optional)
            if create_pr and repo_url:
                logger.info("Phase 5b: Creating GitHub PR")
                
                # Lazy load GitHub client
                if self.github_client is None:
                    from src.mcp.github_client import GitHubMCPClient
                    self.github_client = GitHubMCPClient(github_token=github_token)
                
                # Prepare changed files
                changed_files = {
                    t['file_path']: t['modernized_code']
                    for t in transformations
                }
                
                # Generate PR summary
                pr_summary = self._generate_pr_summary(results, target_version)
                
                # Create PR
                pr_result = await self.github_client.create_pr(
                    repo_url=repo_url,
                    changed_files=changed_files,
                    pr_summary=pr_summary,
                    test_results=results['phases']['validation']
                )
                
                results['phases']['github_pr'] = pr_result
                logger.info(f"PR creation: {pr_result.get('success', False)}")
            
            # Calculate final statistics
            results['statistics'] = {
                "total_files": len(files),
                "files_modernized": len(transformations),
                "tests_generated": total_tests,
                "test_pass_rate": round(total_passed / max(total_tests, 1) * 100, 2),
                "average_coverage": round(avg_coverage, 2)
            }
            
            # Add output locations
            results['output'] = {
                "modernized_files": str(output_dir.absolute()),
                "original_files": str((output_dir / "original").absolute()),
                "test_files": str((output_dir / "tests").absolute())
            }
            
            results['success'] = True
            logger.info("Modernization workflow completed successfully")
            logger.info(f"πŸ“ Modernized files: {output_dir.absolute()}")
            logger.info(f"πŸ“ Test files: {output_dir / 'tests'}")
            
        except Exception as e:
            logger.error(f"Workflow error: {e}")
            results['errors'].append(f"Workflow error: {e}")
            results['success'] = False
        
        return results
    
    def _find_pattern_groups(self, files: List[str]) -> List[Dict]:
        """
        Find groups of files with similar legacy patterns.
        Detects file languages and uses appropriate pattern queries.
        
        Args:
            files: List of file paths
        
        Returns:
            List of pattern group dictionaries
        """
        # Detect languages present in the files
        languages = self._detect_languages_in_files(files)
        
        # Build language-specific pattern queries
        pattern_queries = self._get_pattern_queries_for_languages(languages)
        
        groups = []
        
        for query in pattern_queries:
            try:
                similar_files = self.search_engine.find_similar_patterns(query, top_k=10)
                
                if similar_files:
                    groups.append({
                        "pattern_name": query,
                        "files": [f['file_path'] for f in similar_files],
                        "similarity_scores": [f['score'] for f in similar_files]
                    })
            except Exception as e:
                logger.error(f"Error searching for pattern '{query}': {e}")
        
        return groups
    
    def _detect_languages_in_files(self, files: List[str]) -> set:
        """Detect programming languages from file extensions."""
        extension_to_language = {
            '.py': 'python',
            '.java': 'java',
            '.js': 'javascript',
            '.ts': 'typescript',
            '.jsx': 'javascript',
            '.tsx': 'typescript',
            '.cpp': 'cpp',
            '.c': 'c',
            '.h': 'c',
            '.cs': 'csharp',
            '.go': 'go',
            '.rb': 'ruby',
            '.php': 'php',
            '.kt': 'kotlin',
            '.scala': 'scala',
            '.rs': 'rust',
            '.swift': 'swift'
        }
        
        languages = set()
        for file_path in files:
            ext = Path(file_path).suffix.lower()
            if ext in extension_to_language:
                languages.add(extension_to_language[ext])
        
        return languages if languages else {'python'}  # Default to Python if no recognized extensions
    
    def _get_pattern_queries_for_languages(self, languages: set) -> List[str]:
        """Get pattern queries appropriate for the detected languages."""
        # Common patterns for all languages
        common_patterns = [
            "Files with SQL injection vulnerabilities",
            "Files with hardcoded credentials or secrets",
            "Files with security vulnerabilities",
            "Files with deprecated API usage"
        ]
        
        # Language-specific patterns
        language_patterns = {
            'python': [
                "Files using deprecated database libraries like MySQLdb",
                "Files using Python 2 print statements",
                "Files using deprecated urllib2 library",
                "Files missing type hints",
                "Files using old-style string formatting"
            ],
            'java': [
                "Files using deprecated Java APIs like Vector or Hashtable",
                "Files using raw JDBC without prepared statements",
                "Files missing try-with-resources for AutoCloseable",
                "Files using pre-Java 8 patterns without lambdas or streams",
                "Files using deprecated Date and Calendar APIs",
                "Files with missing null checks or Optional usage"
            ],
            'javascript': [
                "Files using var instead of let or const",
                "Files using callback patterns instead of Promises or async/await",
                "Files using jQuery for DOM manipulation",
                "Files with eval() usage",
                "Files using prototype-based inheritance"
            ],
            'typescript': [
                "Files with excessive any type usage",
                "Files missing strict null checks",
                "Files using old module syntax"
            ],
            'cpp': [
                "Files using raw pointers instead of smart pointers",
                "Files with manual memory management",
                "Files using C-style casts",
                "Files missing RAII patterns"
            ],
            'csharp': [
                "Files using deprecated .NET APIs",
                "Files missing async/await patterns",
                "Files using old collection types"
            ],
            'go': [
                "Files missing error handling",
                "Files with goroutine leaks",
                "Files missing context usage"
            ],
            'ruby': [
                "Files using deprecated Ruby syntax",
                "Files missing proper error handling"
            ],
            'php': [
                "Files using deprecated mysql_* functions",
                "Files missing prepared statements",
                "Files with register_globals usage"
            ]
        }
        
        queries = common_patterns.copy()
        
        for lang in languages:
            if lang in language_patterns:
                queries.extend(language_patterns[lang])
        
        return queries
    
    def _generate_pr_summary(self, results: Dict, target_version: str) -> str:
        """Generate PR summary from results."""
        stats = results['statistics']
        
        # Build coverage line only if coverage > 0
        coverage_line = ""
        if stats.get('average_coverage', 0) > 0:
            coverage_line = f"**Code Coverage**: {stats['average_coverage']:.1f}%\n"
        
        summary = f"""Automated migration to {target_version} with security fixes and performance improvements.

**Files Modernized**: {stats['files_modernized']} / {stats['total_files']}
**Tests Generated**: {stats['tests_generated']}
**Test Pass Rate**: {stats['test_pass_rate']:.1f}%
{coverage_line}
This PR includes:
- Syntax modernization to {target_version}
- Security vulnerability fixes
- Deprecated library replacements
- Comprehensive test suite
- Performance optimizations

All changes have been validated in an isolated sandbox environment.
"""
        
        return summary
    
    def generate_report(self, results: Dict) -> str:
        """
        Generate human-readable report from results.
        
        Args:
            results: Workflow results dictionary
        
        Returns:
            Formatted report string
        """
        report = []
        report.append("=" * 60)
        report.append("LEGACY CODE MODERNIZATION REPORT")
        report.append("=" * 60)
        report.append("")
        
        if results['success']:
            report.append("βœ… Status: SUCCESS")
        else:
            report.append("❌ Status: FAILED")
        
        report.append("")
        report.append("STATISTICS:")
        report.append("-" * 60)
        
        stats = results.get('statistics', {})
        for key, value in stats.items():
            # Skip average_coverage if it's 0
            if key == 'average_coverage' and value == 0:
                continue
            report.append(f"  {key.replace('_', ' ').title()}: {value}")
        
        # Add intelligent pattern statistics if available
        classification_data = results.get('phases', {}).get('classification', {})
        intelligent_stats = classification_data.get('intelligent_stats')
        if intelligent_stats:
            report.append("")
            report.append("INTELLIGENT PATTERN ANALYSIS:")
            report.append("-" * 60)
            report.append(f"  Patterns Detected: {intelligent_stats.get('patterns_detected', 0)}")
            report.append(f"  Average Modernization Score: {intelligent_stats.get('average_modernization_score', 0)}/100")
            report.append(f"  Total Estimated Effort: {intelligent_stats.get('total_estimated_effort_hours', 0)}h")
            
            severity_counts = intelligent_stats.get('severity_counts', {})
            if severity_counts:
                report.append("  Severity Breakdown:")
                for severity, count in severity_counts.items():
                    if count > 0:
                        report.append(f"    {severity.upper()}: {count}")
        
        report.append("")
        report.append("PHASE RESULTS:")
        report.append("-" * 60)
        
        for phase, data in results.get('phases', {}).items():
            report.append(f"\n  {phase.upper()}:")
            if isinstance(data, dict):
                for k, v in data.items():
                    if k not in ['classifications', 'intelligent_stats']:  # Skip large data
                        report.append(f"    {k}: {v}")
        
        # Add output locations
        if results.get('output'):
            report.append("")
            report.append("OUTPUT LOCATIONS:")
            report.append("-" * 60)
            for key, path in results['output'].items():
                report.append(f"  πŸ“ {key.replace('_', ' ').title()}: {path}")
        
        if results.get('errors'):
            report.append("")
            report.append("ERRORS:")
            report.append("-" * 60)
            for error in results['errors']:
                report.append(f"  ⚠️ {error}")
        
        report.append("")
        report.append("=" * 60)
        
        return "\n".join(report)