Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import os | |
| import torch | |
| from model import create_roberta_model | |
| from timeit import default_timer as timer | |
| from typing import Tuple, Dict | |
| # Setup class names | |
| with open("class_names.txt", "r") as f: | |
| class_names = [name.strip() for name in f.readlines()] | |
| ### Load example texts ### | |
| example_texts = [] | |
| with open("example_texts.txt", "r") as file: | |
| example_texts = [line.strip() for line in file.readlines()] | |
| ### Model and transforms preparation ### | |
| # Create model and tokenizer | |
| model, tokenizer = create_roberta_model(output_shape=len(class_names)) | |
| # Load saved weights | |
| model.load_state_dict( | |
| torch.load(f="roberta-base.pth", | |
| map_location=torch.device("cpu")) # load to CPU | |
| ) | |
| ### Predict function ### | |
| def predict(text) -> Tuple[Dict, float]: | |
| # Start a timer | |
| start_time = timer() | |
| # Set the model to eval | |
| model.eval() | |
| # Set up the inputs | |
| X = tokenizer(text, padding="max_length", truncation=True, return_tensors='pt') | |
| # Put model into eval mode, make prediction | |
| model.eval() | |
| with torch.inference_mode(): | |
| # Pass tokenized text through the model and turn the prediction logits into probaiblities | |
| pred_probs = torch.softmax(model(**X).logits, dim=1) | |
| # Create a prediction label and prediction probability dictionary | |
| pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
| # Calculate pred time | |
| end_time = timer() | |
| pred_time = round(end_time - start_time, 4) | |
| # Return pred dict and pred time | |
| return pred_labels_and_probs, pred_time | |
| ### 4. Gradio app ### | |
| # Create title, description and article | |
| title = "A roberta-base Classifier" | |
| description = "[A roberta-base BERT based model](https://huggingface.co/roberta-base) text model to classify text on the [HuggingFace 🤗 dair-ai/emotion dataset](https://huggingface.co/datasets/dair-ai/emotion). [Source Code Found Here](https://colab.research.google.com/drive/1P7rfiDF1jfNHKmkB7WjHPi8PQBLQ4Ege?usp=sharing)" | |
| article = "Built with [Gradio](https://github.com/gradio-app/gradio) and [PyTorch](https://pytorch.org/). [Source Code Found Here](https://colab.research.google.com/drive/1P7rfiDF1jfNHKmkB7WjHPi8PQBLQ4Ege?usp=sharing)" | |
| # Create the Gradio demo | |
| demo = gr.Interface(fn=predict, | |
| inputs=gr.Textbox(lines=2, placeholder="Type your text here..."), | |
| outputs=[gr.Label(num_top_classes=5, label="Predictions"), | |
| gr.Number(label="Prediction time (s)")], | |
| examples=example_texts, | |
| title=title, | |
| description=description, | |
| article=article) | |
| # Launch the demo | |
| demo.launch() | |