""" FastAPI application for FastAI GAN Image Colorization with Firebase Authentication and Gradio UI """ import os # Set environment variables BEFORE any imports os.environ["OMP_NUM_THREADS"] = "1" os.environ["HF_HOME"] = "/tmp/hf_cache" os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache" os.environ["HF_HUB_CACHE"] = "/tmp/hf_cache" os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/hf_cache" os.environ["XDG_CACHE_HOME"] = "/tmp/hf_cache" os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib_config" import io import uuid import logging from pathlib import Path from typing import Optional from fastapi import FastAPI, UploadFile, File, HTTPException, Depends, Request, Form from fastapi.responses import FileResponse, JSONResponse from fastapi.middleware.cors import CORSMiddleware from fastapi.staticfiles import StaticFiles import firebase_admin from firebase_admin import credentials, app_check, auth as firebase_auth from PIL import Image import torch import uvicorn import gradio as gr import numpy as np import cv2 # FastAI imports from fastai.vision.all import * from huggingface_hub import from_pretrained_fastai from app.config import settings from app.pytorch_colorizer import PyTorchColorizer from app.database import ( get_database, log_api_call, log_image_upload, log_colorization, log_media_click, close_connection, ) # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) # Create writable directories Path("/tmp/hf_cache").mkdir(parents=True, exist_ok=True) Path("/tmp/matplotlib_config").mkdir(parents=True, exist_ok=True) Path("/tmp/colorize_uploads").mkdir(parents=True, exist_ok=True) Path("/tmp/colorize_results").mkdir(parents=True, exist_ok=True) # Initialize FastAPI app app = FastAPI( title="FastAI Image Colorizer API", description="Image colorization using FastAI GAN model with Firebase authentication", version="1.0.0" ) # CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Initialize Firebase Admin SDK firebase_cred_path = os.getenv("FIREBASE_CREDENTIALS_PATH", "/tmp/firebase-adminsdk.json") if os.path.exists(firebase_cred_path): try: cred = credentials.Certificate(firebase_cred_path) firebase_admin.initialize_app(cred) logger.info("Firebase Admin SDK initialized") except Exception as e: logger.warning("Failed to initialize Firebase: %s", str(e)) try: firebase_admin.initialize_app() except: pass else: logger.warning("Firebase credentials file not found. App Check will be disabled.") try: firebase_admin.initialize_app() except: pass # Storage directories UPLOAD_DIR = Path("/tmp/colorize_uploads") RESULT_DIR = Path("/tmp/colorize_results") # Mount static files app.mount("/results", StaticFiles(directory=str(RESULT_DIR)), name="results") app.mount("/uploads", StaticFiles(directory=str(UPLOAD_DIR)), name="uploads") # Initialize FastAI model learn = None pytorch_colorizer = None model_load_error: Optional[str] = None model_type: str = "none" # "fastai", "pytorch", or "none" @app.on_event("startup") async def startup_event(): """Load FastAI or PyTorch model on startup and initialize MongoDB""" global learn, pytorch_colorizer, model_load_error, model_type # Initialize MongoDB try: db = get_database() if db is not None: logger.info("✅ MongoDB initialized successfully!") except Exception as e: logger.warning("⚠️ MongoDB initialization failed: %s", str(e)) model_id = os.getenv("MODEL_ID", "Hammad712/GAN-Colorization-Model") # Try FastAI first try: logger.info("🔄 Attempting to load FastAI GAN Colorization Model: %s", model_id) learn = from_pretrained_fastai(model_id) logger.info("✅ FastAI model loaded successfully!") model_type = "fastai" model_load_error = None return except Exception as e: error_msg = str(e) logger.warning("⚠️ FastAI model loading failed: %s. Trying PyTorch fallback...", error_msg) # Fallback to PyTorch try: logger.info("🔄 Attempting to load PyTorch GAN Colorization Model: %s", model_id) pytorch_colorizer = PyTorchColorizer(model_id=model_id, model_filename="generator.pt") logger.info("✅ PyTorch model loaded successfully!") model_type = "pytorch" model_load_error = None except Exception as e: error_msg = str(e) logger.error("❌ Failed to load both FastAI and PyTorch models: %s", error_msg) model_load_error = error_msg model_type = "none" # Don't raise - allow health check to work @app.on_event("shutdown") async def shutdown_event(): """Cleanup on shutdown""" global learn, pytorch_colorizer if learn: del learn if pytorch_colorizer: del pytorch_colorizer close_connection() logger.info("Application shutdown") def _extract_bearer_token(authorization_header: str | None) -> str | None: if not authorization_header: return None parts = authorization_header.split(" ", 1) if len(parts) == 2 and parts[0].lower() == "bearer": return parts[1].strip() return None async def verify_request(request: Request): """ Verify Firebase authentication Accept either: - Firebase Auth id_token via Authorization: Bearer - Firebase App Check token via X-Firebase-AppCheck (when ENABLE_APP_CHECK=true) """ # If Firebase is not initialized or auth is explicitly disabled, allow if not firebase_admin._apps or os.getenv("DISABLE_AUTH", "false").lower() == "true": return True # Try Firebase Auth id_token first if present bearer = _extract_bearer_token(request.headers.get("Authorization")) if bearer: try: decoded = firebase_auth.verify_id_token(bearer) request.state.user = decoded logger.info("Firebase Auth id_token verified for uid: %s", decoded.get("uid")) return True except Exception as e: logger.warning("Auth token verification failed: %s", str(e)) # If App Check is enabled, require valid App Check token if settings.ENABLE_APP_CHECK: app_check_token = request.headers.get("X-Firebase-AppCheck") if not app_check_token: raise HTTPException(status_code=401, detail="Missing App Check token") try: app_check_claims = app_check.verify_token(app_check_token) logger.info("App Check token verified for: %s", app_check_claims.get("app_id")) return True except Exception as e: logger.warning("App Check token verification failed: %s", str(e)) raise HTTPException(status_code=401, detail="Invalid App Check token") # Neither token required nor provided → allow (App Check disabled) return True def _resolve_user_id(request: Request, supplied_user_id: Optional[str]) -> Optional[str]: """Return supplied user_id if provided and not empty, otherwise None (will auto-generate in log_media_click).""" if supplied_user_id and supplied_user_id.strip(): return supplied_user_id.strip() return None @app.get("/api") async def api_info(request: Request): """API info endpoint""" response_data = { "app": "FastAI Image Colorizer API", "version": "1.0.0", "health": "/health", "colorize": "/colorize", "gradio": "/" } # Log API call user_id = None if hasattr(request, 'state') and hasattr(request.state, 'user'): user_id = request.state.user.get("uid") log_api_call( endpoint="/api", method="GET", status_code=200, response_data=response_data, user_id=user_id, ip_address=request.client.host if request.client else None ) return response_data @app.get("/health") async def health_check(request: Request): """Health check endpoint""" model_loaded = (learn is not None) or (pytorch_colorizer is not None) response = { "status": "healthy", "model_loaded": model_loaded, "model_type": model_type, "model_id": os.getenv("MODEL_ID", "Hammad712/GAN-Colorization-Model"), "using_fallback": not model_loaded } if model_load_error: response["model_error"] = model_load_error response["message"] = "Model failed to load. Using fallback colorization method." elif not model_loaded: response["message"] = "No model loaded. Using fallback colorization method." else: response["message"] = f"Model loaded successfully ({model_type})" # Log API call log_api_call( endpoint="/health", method="GET", status_code=200, response_data=response, ip_address=request.client.host if request.client else None ) return response def simple_colorize_fallback(image: Image.Image) -> Image.Image: """ Enhanced fallback colorization using LAB color space with better color hints This provides basic colorization when the model doesn't load Note: This is a simple heuristic-based approach and won't match trained models """ # Convert to LAB color space if image.mode != "RGB": image = image.convert("RGB") # Convert to numpy array img_array = np.array(image) original_shape = img_array.shape # Convert RGB to LAB lab = cv2.cvtColor(img_array, cv2.COLOR_RGB2LAB) # Split channels l, a, b = cv2.split(lab) # Enhance lightness with CLAHE (Contrast Limited Adaptive Histogram Equalization) clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8)) l_enhanced = clahe.apply(l) # Add intelligent color hints based on image characteristics # Analyze the grayscale image to determine color hints l_normalized = l.astype(np.float32) / 255.0 # Create color hints: warmer tones for mid-brightness areas # a channel: green-red axis (positive = red, negative = green) # b channel: blue-yellow axis (positive = yellow, negative = blue) # Add warm tones (slight red and yellow bias) based on brightness # Darker areas get cooler tones, mid-brightness gets warmer brightness_mask = np.clip((l_normalized - 0.3) * 2, 0, 1) # Emphasize mid-brightness # Add color hints: warm tones for skin/faces, cooler for shadows a_hint = np.clip(a.astype(np.float32) + brightness_mask * 8 + (1 - brightness_mask) * 2, 0, 255).astype(np.uint8) b_hint = np.clip(b.astype(np.float32) + brightness_mask * 12 + (1 - brightness_mask) * 3, 0, 255).astype(np.uint8) # Merge channels and convert back to RGB lab_colored = cv2.merge([l_enhanced, a_hint, b_hint]) colored_rgb = cv2.cvtColor(lab_colored, cv2.COLOR_LAB2RGB) # Apply slight saturation boost hsv = cv2.cvtColor(colored_rgb, cv2.COLOR_RGB2HSV) hsv[:, :, 1] = np.clip(hsv[:, :, 1].astype(np.float32) * 1.2, 0, 255).astype(np.uint8) colored_rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB) return Image.fromarray(colored_rgb) def colorize_pil(image: Image.Image) -> Image.Image: """Run model prediction and return colorized image""" # Try FastAI first if learn is not None: if image.mode != "RGB": image = image.convert("RGB") pred = learn.predict(image) # Handle different return types from FastAI if isinstance(pred, (list, tuple)): colorized = pred[0] if len(pred) > 0 else image else: colorized = pred # Ensure we have a PIL Image if not isinstance(colorized, Image.Image): if isinstance(colorized, torch.Tensor): # Convert tensor to PIL if colorized.dim() == 4: colorized = colorized[0] if colorized.dim() == 3: colorized = colorized.permute(1, 2, 0).cpu() if colorized.dtype in (torch.float32, torch.float16): colorized = torch.clamp(colorized, 0, 1) colorized = (colorized * 255).byte() colorized = Image.fromarray(colorized.numpy(), 'RGB') else: raise ValueError(f"Unexpected tensor shape: {colorized.shape}") else: raise ValueError(f"Unexpected prediction type: {type(colorized)}") if colorized.mode != "RGB": colorized = colorized.convert("RGB") return colorized # Fallback to PyTorch elif pytorch_colorizer is not None: return pytorch_colorizer.colorize(image) else: # Final fallback: simple colorization logger.info("No model loaded, using enhanced colorization fallback (LAB color space method)") return simple_colorize_fallback(image) @app.post("/colorize") async def colorize_api( request: Request, file: UploadFile = File(...), user_id: Optional[str] = Form(None), category_id: Optional[str] = Form(None), categoryId: Optional[str] = Form(None), verified: bool = Depends(verify_request) ): """ Upload a black & white image -> returns colorized image. Requires Firebase authentication unless DISABLE_AUTH=true """ import time start_time = time.time() effective_user_id = _resolve_user_id(request, user_id) effective_category_id = (category_id or categoryId) if (category_id or categoryId) else None if effective_category_id: effective_category_id = effective_category_id.strip() if isinstance(effective_category_id, str) else effective_category_id if not effective_category_id: effective_category_id = None ip_address = request.client.host if request.client else None # Allow fallback colorization even if model isn't loaded # if learn is None and pytorch_colorizer is None: # raise HTTPException(status_code=503, detail="Colorization model not loaded") if not file.content_type or not file.content_type.startswith("image/"): log_api_call( endpoint="/colorize", method="POST", status_code=400, error="File must be an image", user_id=effective_user_id, ip_address=ip_address ) raise HTTPException(status_code=400, detail="File must be an image") try: img_bytes = await file.read() image = Image.open(io.BytesIO(img_bytes)).convert("RGB") logger.info("Colorizing image...") colorized = colorize_pil(image) processing_time = time.time() - start_time output_filename = f"{uuid.uuid4()}.png" output_path = RESULT_DIR / output_filename colorized.save(output_path, "PNG") logger.info("Colorized image saved: %s", output_filename) result_id = output_filename.replace(".png", "") # Log to MongoDB (colorization_db -> colorizations) log_colorization( result_id=result_id, model_type=model_type, processing_time=processing_time, user_id=effective_user_id, ip_address=ip_address, status="success" ) log_api_call( endpoint="/colorize", method="POST", status_code=200, request_data={"filename": file.filename, "content_type": file.content_type}, response_data={"result_id": result_id, "filename": output_filename}, user_id=effective_user_id, ip_address=ip_address ) # Best-effort media click tracking (admin DB) log_media_click( user_id=effective_user_id, category_id=effective_category_id, endpoint_path=str(request.url.path), default_category_id=settings.DEFAULT_CATEGORY_FALLBACK, ) # Return the image file return FileResponse( output_path, media_type="image/png", filename=f"colorized_{output_filename}" ) except Exception as e: error_msg = str(e) logger.error("Error colorizing image: %s", error_msg) # Log failed colorization to colorizations collection log_colorization( result_id=None, model_type=model_type, processing_time=None, user_id=effective_user_id, ip_address=ip_address, status="failed", error=error_msg ) log_api_call( endpoint="/colorize", method="POST", status_code=500, error=error_msg, user_id=effective_user_id, ip_address=ip_address ) raise HTTPException(status_code=500, detail=f"Error colorizing image: {error_msg}") # ========================================================== # Gradio Interface (for Space UI) # ========================================================== def gradio_colorize(image): """Gradio colorization function""" if image is None: return None try: # Always try to colorize, even with fallback return colorize_pil(image) except Exception as e: logger.error("Gradio colorization error: %s", str(e)) return None title = "🎨 Image Colorizer" description = "Upload a black & white photo to generate a colorized version. Uses AI model when available, otherwise uses enhanced colorization fallback." iface = gr.Interface( fn=gradio_colorize, inputs=gr.Image(type="pil", label="Upload B&W Image"), outputs=gr.Image(type="pil", label="Colorized Image"), title=title, description=description, ) # Mount Gradio app at root (this will be the Space UI) # Note: This will override the root endpoint, so use /api for API info app = gr.mount_gradio_app(app, iface, path="/") # ========================================================== # Run Server # ========================================================== if __name__ == "__main__": port = int(os.getenv("PORT", "7860")) uvicorn.run(app, host="0.0.0.0", port=port)