Update app/main.py
Browse files- app/main.py +92 -52
app/main.py
CHANGED
|
@@ -1,72 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
-
|
| 3 |
-
from
|
|
|
|
| 4 |
from PIL import Image
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
-
import
|
| 7 |
-
import base64
|
| 8 |
-
import requests
|
| 9 |
|
| 10 |
-
#
|
|
|
|
|
|
|
| 11 |
MODEL_PATH = "generator.pt"
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
-
generator =
|
| 21 |
-
generator.eval()
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
transforms.ToTensor()
|
| 28 |
-
])
|
| 29 |
|
| 30 |
-
|
| 31 |
-
transforms.Resize((256, 256)),
|
| 32 |
-
transforms.ToTensor()
|
| 33 |
-
])
|
| 34 |
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
-
def colorize_image(input_image):
|
| 39 |
-
img = transform_gray(input_image).unsqueeze(0).to(device)
|
| 40 |
with torch.no_grad():
|
| 41 |
-
output = generator(
|
| 42 |
-
|
| 43 |
-
return output_image
|
| 44 |
-
|
| 45 |
-
# ---- Gradio Interface ----
|
| 46 |
-
iface = gr.Interface(
|
| 47 |
-
fn=colorize_image,
|
| 48 |
-
inputs=gr.Image(type="pil", label="Upload Grayscale Image"),
|
| 49 |
-
outputs=gr.Image(type="pil", label="Colorized Image"),
|
| 50 |
-
title="GAN Image Colorization (Hammad712)",
|
| 51 |
-
description="Colorizes black and white images using GAN model"
|
| 52 |
-
)
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
from fastapi.responses import StreamingResponse
|
| 57 |
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
@app.post("/colorize")
|
| 61 |
-
async def
|
| 62 |
-
|
|
|
|
| 63 |
colorized = colorize_image(image)
|
| 64 |
-
buf = io.BytesIO()
|
| 65 |
-
colorized.save(buf, format="PNG")
|
| 66 |
-
buf.seek(0)
|
| 67 |
-
return StreamingResponse(buf, media_type="image/png")
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
|
|
|
|
|
|
|
|
| 1 |
+
import io
|
| 2 |
+
import os
|
| 3 |
+
import uuid
|
| 4 |
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from fastapi import FastAPI, UploadFile, File
|
| 7 |
+
from fastapi.responses import FileResponse
|
| 8 |
from PIL import Image
|
| 9 |
+
import torchvision.transforms as T
|
| 10 |
import gradio as gr
|
| 11 |
+
import uvicorn
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
# ==========================================================
|
| 14 |
+
# 🔧 PATHS
|
| 15 |
+
# ==========================================================
|
| 16 |
MODEL_PATH = "generator.pt"
|
| 17 |
+
UPLOAD_DIR = "/tmp/uploads"
|
| 18 |
+
RESULT_DIR = "/tmp/results"
|
| 19 |
+
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
| 20 |
+
os.makedirs(RESULT_DIR, exist_ok=True)
|
| 21 |
+
|
| 22 |
+
# ==========================================================
|
| 23 |
+
# 🧩 Define Generator Architecture (from repo style)
|
| 24 |
+
# ==========================================================
|
| 25 |
+
class Generator(nn.Module):
|
| 26 |
+
def __init__(self):
|
| 27 |
+
super(Generator, self).__init__()
|
| 28 |
+
self.main = nn.Sequential(
|
| 29 |
+
nn.Conv2d(1, 64, kernel_size=4, stride=2, padding=1),
|
| 30 |
+
nn.ReLU(True),
|
| 31 |
+
|
| 32 |
+
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
|
| 33 |
+
nn.BatchNorm2d(128),
|
| 34 |
+
nn.ReLU(True),
|
| 35 |
+
|
| 36 |
+
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
|
| 37 |
+
nn.BatchNorm2d(64),
|
| 38 |
+
nn.ReLU(True),
|
| 39 |
|
| 40 |
+
nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1),
|
| 41 |
+
nn.Tanh()
|
| 42 |
+
)
|
| 43 |
|
| 44 |
+
def forward(self, x):
|
| 45 |
+
return self.main(x)
|
| 46 |
+
|
| 47 |
+
# ==========================================================
|
| 48 |
+
# 🚀 Load Model
|
| 49 |
+
# ==========================================================
|
| 50 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 51 |
+
generator = Generator().to(device)
|
|
|
|
| 52 |
|
| 53 |
+
# Load weights
|
| 54 |
+
state_dict = torch.load(MODEL_PATH, map_location=device)
|
| 55 |
+
generator.load_state_dict(state_dict)
|
| 56 |
+
generator.eval()
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
print("✅ Model loaded successfully!")
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
# ==========================================================
|
| 61 |
+
# 🎨 Colorization Function
|
| 62 |
+
# ==========================================================
|
| 63 |
+
def colorize_image(image: Image.Image):
|
| 64 |
+
transform = T.Compose([
|
| 65 |
+
T.Resize((256, 256)),
|
| 66 |
+
T.Grayscale(num_output_channels=1),
|
| 67 |
+
T.ToTensor()
|
| 68 |
+
])
|
| 69 |
|
| 70 |
+
img_tensor = transform(image).unsqueeze(0).to(device)
|
|
|
|
|
|
|
| 71 |
with torch.no_grad():
|
| 72 |
+
output = generator(img_tensor)
|
| 73 |
+
output = (output.squeeze(0).permute(1, 2, 0).cpu().numpy() + 1) / 2.0 # Scale 0-1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
output_img = Image.fromarray((output * 255).astype("uint8"))
|
| 76 |
+
return output_img
|
|
|
|
| 77 |
|
| 78 |
+
# ==========================================================
|
| 79 |
+
# 🌐 FASTAPI APP
|
| 80 |
+
# ==========================================================
|
| 81 |
+
app = FastAPI(title="GAN Image Colorization API")
|
| 82 |
|
| 83 |
@app.post("/colorize")
|
| 84 |
+
async def colorize_endpoint(file: UploadFile = File(...)):
|
| 85 |
+
img_bytes = await file.read()
|
| 86 |
+
image = Image.open(io.BytesIO(img_bytes)).convert("RGB")
|
| 87 |
colorized = colorize_image(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
+
output_filename = f"{uuid.uuid4()}.png"
|
| 90 |
+
output_path = os.path.join(RESULT_DIR, output_filename)
|
| 91 |
+
colorized.save(output_path)
|
| 92 |
+
|
| 93 |
+
return FileResponse(output_path, media_type="image/png")
|
| 94 |
+
|
| 95 |
+
# ==========================================================
|
| 96 |
+
# 💠 GRADIO UI
|
| 97 |
+
# ==========================================================
|
| 98 |
+
def gradio_ui(image):
|
| 99 |
+
return colorize_image(image)
|
| 100 |
+
|
| 101 |
+
iface = gr.Interface(
|
| 102 |
+
fn=gradio_ui,
|
| 103 |
+
inputs=gr.Image(type="pil", label="Upload B&W Image"),
|
| 104 |
+
outputs=gr.Image(type="pil", label="Colorized Image"),
|
| 105 |
+
title="🎨 GAN Image Colorization",
|
| 106 |
+
description="Upload a black-and-white photo to get it colorized using a GAN model."
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
gradio_app = gr.mount_gradio_app(app, iface, path="/")
|
| 110 |
|
| 111 |
+
if __name__ == "__main__":
|
| 112 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|