Update app/main.py
Browse files- app/main.py +50 -349
app/main.py
CHANGED
|
@@ -1,383 +1,84 @@
|
|
| 1 |
-
"""
|
| 2 |
-
FastAPI application for FastAI GAN Image Colorization
|
| 3 |
-
with Firebase Authentication and Gradio UI
|
| 4 |
-
"""
|
| 5 |
-
import os
|
| 6 |
-
# Set environment variables BEFORE any imports
|
| 7 |
-
os.environ["OMP_NUM_THREADS"] = "1"
|
| 8 |
-
os.environ["HF_HOME"] = "/tmp/hf_cache"
|
| 9 |
-
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
|
| 10 |
-
os.environ["HF_HUB_CACHE"] = "/tmp/hf_cache"
|
| 11 |
-
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/hf_cache"
|
| 12 |
-
os.environ["XDG_CACHE_HOME"] = "/tmp/hf_cache"
|
| 13 |
-
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib_config"
|
| 14 |
-
os.environ["GRADIO_TEMP_DIR"] = "/tmp/gradio"
|
| 15 |
-
|
| 16 |
import io
|
| 17 |
import uuid
|
| 18 |
-
import
|
| 19 |
-
from pathlib import Path
|
| 20 |
-
from typing import Optional
|
| 21 |
-
|
| 22 |
-
from fastapi import FastAPI, UploadFile, File, HTTPException, Depends, Request
|
| 23 |
-
from fastapi.responses import FileResponse, JSONResponse
|
| 24 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 25 |
-
from fastapi.staticfiles import StaticFiles
|
| 26 |
-
import firebase_admin
|
| 27 |
-
from firebase_admin import credentials, app_check, auth as firebase_auth
|
| 28 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
import torch
|
| 30 |
import uvicorn
|
| 31 |
-
import gradio as gr
|
| 32 |
-
|
| 33 |
-
# FastAI imports
|
| 34 |
-
from fastai.vision.all import *
|
| 35 |
-
from huggingface_hub import from_pretrained_fastai, hf_hub_download, list_repo_files
|
| 36 |
-
|
| 37 |
-
from app.config import settings
|
| 38 |
-
|
| 39 |
-
# Configure logging
|
| 40 |
-
logging.basicConfig(
|
| 41 |
-
level=logging.INFO,
|
| 42 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 43 |
-
)
|
| 44 |
-
logger = logging.getLogger(__name__)
|
| 45 |
-
|
| 46 |
-
# Create writable directories
|
| 47 |
-
Path("/tmp/hf_cache").mkdir(parents=True, exist_ok=True)
|
| 48 |
-
Path("/tmp/matplotlib_config").mkdir(parents=True, exist_ok=True)
|
| 49 |
-
Path("/tmp/colorize_uploads").mkdir(parents=True, exist_ok=True)
|
| 50 |
-
Path("/tmp/colorize_results").mkdir(parents=True, exist_ok=True)
|
| 51 |
-
|
| 52 |
-
# Initialize FastAPI app
|
| 53 |
-
app = FastAPI(
|
| 54 |
-
title="FastAI Image Colorizer API",
|
| 55 |
-
description="Image colorization using FastAI GAN model with Firebase authentication",
|
| 56 |
-
version="1.0.0"
|
| 57 |
-
)
|
| 58 |
-
|
| 59 |
-
# CORS middleware
|
| 60 |
-
app.add_middleware(
|
| 61 |
-
CORSMiddleware,
|
| 62 |
-
allow_origins=["*"],
|
| 63 |
-
allow_credentials=True,
|
| 64 |
-
allow_methods=["*"],
|
| 65 |
-
allow_headers=["*"],
|
| 66 |
-
)
|
| 67 |
-
|
| 68 |
-
# Initialize Firebase Admin SDK
|
| 69 |
-
firebase_cred_path = os.getenv("FIREBASE_CREDENTIALS_PATH", "/tmp/firebase-adminsdk.json")
|
| 70 |
-
if os.path.exists(firebase_cred_path):
|
| 71 |
-
try:
|
| 72 |
-
cred = credentials.Certificate(firebase_cred_path)
|
| 73 |
-
firebase_admin.initialize_app(cred)
|
| 74 |
-
logger.info("Firebase Admin SDK initialized")
|
| 75 |
-
except Exception as e:
|
| 76 |
-
logger.warning("Failed to initialize Firebase: %s", str(e))
|
| 77 |
-
try:
|
| 78 |
-
firebase_admin.initialize_app()
|
| 79 |
-
except:
|
| 80 |
-
pass
|
| 81 |
-
else:
|
| 82 |
-
logger.warning("Firebase credentials file not found. App Check will be disabled.")
|
| 83 |
-
try:
|
| 84 |
-
firebase_admin.initialize_app()
|
| 85 |
-
except:
|
| 86 |
-
pass
|
| 87 |
-
|
| 88 |
-
# Storage directories
|
| 89 |
-
UPLOAD_DIR = Path("/tmp/colorize_uploads")
|
| 90 |
-
RESULT_DIR = Path("/tmp/colorize_results")
|
| 91 |
-
|
| 92 |
-
# Mount static files
|
| 93 |
-
app.mount("/results", StaticFiles(directory=str(RESULT_DIR)), name="results")
|
| 94 |
-
app.mount("/uploads", StaticFiles(directory=str(UPLOAD_DIR)), name="uploads")
|
| 95 |
-
|
| 96 |
-
# Initialize FastAI model
|
| 97 |
-
learn = None
|
| 98 |
-
model_load_error: Optional[str] = None
|
| 99 |
-
|
| 100 |
-
@app.on_event("startup")
|
| 101 |
-
async def startup_event():
|
| 102 |
-
"""Load FastAI model on startup"""
|
| 103 |
-
global learn, model_load_error
|
| 104 |
-
try:
|
| 105 |
-
model_id = os.getenv("MODEL_ID", "Hammad712/GAN-Colorization-Model")
|
| 106 |
-
logger.info("🔄 Loading FastAI GAN Colorization Model: %s", model_id)
|
| 107 |
-
|
| 108 |
-
# Try using from_pretrained_fastai first
|
| 109 |
-
try:
|
| 110 |
-
learn = from_pretrained_fastai(model_id)
|
| 111 |
-
logger.info("✅ Model loaded successfully via from_pretrained_fastai!")
|
| 112 |
-
model_load_error = None
|
| 113 |
-
except Exception as e1:
|
| 114 |
-
logger.warning("from_pretrained_fastai failed: %s. Trying manual download...", str(e1))
|
| 115 |
-
# Fallback: manually download and load the model file
|
| 116 |
-
hf_token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_HUB_TOKEN")
|
| 117 |
-
|
| 118 |
-
# List repository files to find the actual model file
|
| 119 |
-
model_filenames = []
|
| 120 |
-
model_type = "fastai"
|
| 121 |
-
|
| 122 |
-
try:
|
| 123 |
-
repo_files = list_repo_files(repo_id=model_id, token=hf_token)
|
| 124 |
-
logger.info("Repository files: %s", repo_files)
|
| 125 |
-
pkl_files = [f for f in repo_files if f.endswith('.pkl')]
|
| 126 |
-
pt_files = [f for f in repo_files if f.endswith('.pt')]
|
| 127 |
-
|
| 128 |
-
if pkl_files:
|
| 129 |
-
model_filenames = pkl_files
|
| 130 |
-
logger.info("Found .pkl files in repository: %s", pkl_files)
|
| 131 |
-
model_type = "fastai"
|
| 132 |
-
elif pt_files:
|
| 133 |
-
model_filenames = pt_files
|
| 134 |
-
logger.info("Found .pt files in repository: %s", pt_files)
|
| 135 |
-
model_type = "pytorch"
|
| 136 |
-
else:
|
| 137 |
-
model_filenames = ["model.pkl", "export.pkl", "learner.pkl", "model_export.pkl", "generator.pt"]
|
| 138 |
-
model_type = "fastai"
|
| 139 |
-
except Exception as list_err:
|
| 140 |
-
logger.warning("Could not list repository files: %s. Trying common filenames...", str(list_err))
|
| 141 |
-
model_filenames = ["model.pkl", "export.pkl", "learner.pkl", "model_export.pkl", "generator.pt"]
|
| 142 |
-
model_type = "fastai"
|
| 143 |
-
|
| 144 |
-
# Try to download and load the model file
|
| 145 |
-
cache_dir = os.environ.get("HF_HOME", "/tmp/hf_cache")
|
| 146 |
-
model_path = None
|
| 147 |
-
for filename in model_filenames:
|
| 148 |
-
try:
|
| 149 |
-
model_path = hf_hub_download(
|
| 150 |
-
repo_id=model_id,
|
| 151 |
-
filename=filename,
|
| 152 |
-
cache_dir=cache_dir,
|
| 153 |
-
token=hf_token
|
| 154 |
-
)
|
| 155 |
-
logger.info("Found model file: %s", filename)
|
| 156 |
-
if filename.endswith('.pt'):
|
| 157 |
-
model_type = "pytorch"
|
| 158 |
-
elif filename.endswith('.pkl'):
|
| 159 |
-
model_type = "fastai"
|
| 160 |
-
break
|
| 161 |
-
except Exception as dl_err:
|
| 162 |
-
logger.debug("Failed to download %s: %s", filename, str(dl_err))
|
| 163 |
-
continue
|
| 164 |
-
|
| 165 |
-
if model_path and os.path.exists(model_path):
|
| 166 |
-
if model_type == "pytorch":
|
| 167 |
-
error_msg = (
|
| 168 |
-
f"Repository '{model_id}' contains a PyTorch model (.pt file), "
|
| 169 |
-
f"not a FastAI model. FastAI models must be .pkl files created with FastAI's export. "
|
| 170 |
-
f"Please use a FastAI-compatible colorization model, or switch to a different model backend."
|
| 171 |
-
)
|
| 172 |
-
logger.error(error_msg)
|
| 173 |
-
model_load_error = error_msg
|
| 174 |
-
raise RuntimeError(error_msg)
|
| 175 |
-
else:
|
| 176 |
-
logger.info("Loading FastAI model from: %s", model_path)
|
| 177 |
-
learn = load_learner(model_path)
|
| 178 |
-
logger.info("✅ Model loaded successfully from %s", model_path)
|
| 179 |
-
model_load_error = None
|
| 180 |
-
else:
|
| 181 |
-
error_msg = (
|
| 182 |
-
f"Could not find model file in repository '{model_id}'. "
|
| 183 |
-
f"Tried: {', '.join(model_filenames)}. "
|
| 184 |
-
f"Original error: {str(e1)}"
|
| 185 |
-
)
|
| 186 |
-
logger.error(error_msg)
|
| 187 |
-
model_load_error = error_msg
|
| 188 |
-
raise RuntimeError(error_msg)
|
| 189 |
-
|
| 190 |
-
except Exception as e:
|
| 191 |
-
error_msg = str(e)
|
| 192 |
-
if not model_load_error:
|
| 193 |
-
model_load_error = error_msg
|
| 194 |
-
logger.error("❌ Failed to load model: %s", error_msg)
|
| 195 |
-
# Don't raise - allow health check to work
|
| 196 |
-
|
| 197 |
-
@app.on_event("shutdown")
|
| 198 |
-
async def shutdown_event():
|
| 199 |
-
"""Cleanup on shutdown"""
|
| 200 |
-
global learn
|
| 201 |
-
if learn:
|
| 202 |
-
del learn
|
| 203 |
-
logger.info("Application shutdown")
|
| 204 |
-
|
| 205 |
-
def _extract_bearer_token(authorization_header: str | None) -> str | None:
|
| 206 |
-
if not authorization_header:
|
| 207 |
-
return None
|
| 208 |
-
parts = authorization_header.split(" ", 1)
|
| 209 |
-
if len(parts) == 2 and parts[0].lower() == "bearer":
|
| 210 |
-
return parts[1].strip()
|
| 211 |
-
return None
|
| 212 |
-
|
| 213 |
-
async def verify_request(request: Request):
|
| 214 |
-
"""
|
| 215 |
-
Verify Firebase authentication
|
| 216 |
-
Accept either:
|
| 217 |
-
- Firebase Auth id_token via Authorization: Bearer <id_token>
|
| 218 |
-
- Firebase App Check token via X-Firebase-AppCheck (when ENABLE_APP_CHECK=true)
|
| 219 |
-
"""
|
| 220 |
-
# If Firebase is not initialized or auth is explicitly disabled, allow
|
| 221 |
-
if not firebase_admin._apps or os.getenv("DISABLE_AUTH", "false").lower() == "true":
|
| 222 |
-
return True
|
| 223 |
-
|
| 224 |
-
# Try Firebase Auth id_token first if present
|
| 225 |
-
bearer = _extract_bearer_token(request.headers.get("Authorization"))
|
| 226 |
-
if bearer:
|
| 227 |
-
try:
|
| 228 |
-
decoded = firebase_auth.verify_id_token(bearer)
|
| 229 |
-
request.state.user = decoded
|
| 230 |
-
logger.info("Firebase Auth id_token verified for uid: %s", decoded.get("uid"))
|
| 231 |
-
return True
|
| 232 |
-
except Exception as e:
|
| 233 |
-
logger.warning("Auth token verification failed: %s", str(e))
|
| 234 |
-
|
| 235 |
-
# If App Check is enabled, require valid App Check token
|
| 236 |
-
if settings.ENABLE_APP_CHECK:
|
| 237 |
-
app_check_token = request.headers.get("X-Firebase-AppCheck")
|
| 238 |
-
if not app_check_token:
|
| 239 |
-
raise HTTPException(status_code=401, detail="Missing App Check token")
|
| 240 |
-
try:
|
| 241 |
-
app_check_claims = app_check.verify_token(app_check_token)
|
| 242 |
-
logger.info("App Check token verified for: %s", app_check_claims.get("app_id"))
|
| 243 |
-
return True
|
| 244 |
-
except Exception as e:
|
| 245 |
-
logger.warning("App Check token verification failed: %s", str(e))
|
| 246 |
-
raise HTTPException(status_code=401, detail="Invalid App Check token")
|
| 247 |
|
| 248 |
-
|
| 249 |
-
|
|
|
|
|
|
|
| 250 |
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
"app": "FastAI Image Colorizer API",
|
| 256 |
-
"version": "1.0.0",
|
| 257 |
-
"health": "/health",
|
| 258 |
-
"colorize": "/colorize",
|
| 259 |
-
"gradio": "/"
|
| 260 |
-
}
|
| 261 |
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
"model_id": os.getenv("MODEL_ID", "Hammad712/GAN-Colorization-Model")
|
| 269 |
-
}
|
| 270 |
-
if model_load_error:
|
| 271 |
-
response["model_error"] = model_load_error
|
| 272 |
-
return response
|
| 273 |
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
if image.mode != "RGB":
|
| 279 |
image = image.convert("RGB")
|
| 280 |
-
pred = learn.predict(image)
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
# Ensure we have a PIL Image
|
| 288 |
-
if not isinstance(colorized, Image.Image):
|
| 289 |
-
if isinstance(colorized, torch.Tensor):
|
| 290 |
-
# Convert tensor to PIL
|
| 291 |
-
if colorized.dim() == 4:
|
| 292 |
-
colorized = colorized[0]
|
| 293 |
-
if colorized.dim() == 3:
|
| 294 |
-
colorized = colorized.permute(1, 2, 0).cpu()
|
| 295 |
-
if colorized.dtype in (torch.float32, torch.float16):
|
| 296 |
-
colorized = torch.clamp(colorized, 0, 1)
|
| 297 |
-
colorized = (colorized * 255).byte()
|
| 298 |
-
colorized = Image.fromarray(colorized.numpy(), 'RGB')
|
| 299 |
-
else:
|
| 300 |
-
raise ValueError(f"Unexpected tensor shape: {colorized.shape}")
|
| 301 |
-
else:
|
| 302 |
-
raise ValueError(f"Unexpected prediction type: {type(colorized)}")
|
| 303 |
-
|
| 304 |
-
if colorized.mode != "RGB":
|
| 305 |
-
colorized = colorized.convert("RGB")
|
| 306 |
-
|
| 307 |
-
return colorized
|
| 308 |
|
| 309 |
@app.post("/colorize")
|
| 310 |
-
async def
|
| 311 |
-
file: UploadFile = File(...),
|
| 312 |
-
verified: bool = Depends(verify_request)
|
| 313 |
-
):
|
| 314 |
"""
|
| 315 |
-
Upload a black & white image ->
|
| 316 |
-
Requires Firebase authentication unless DISABLE_AUTH=true
|
| 317 |
"""
|
| 318 |
-
if learn is None:
|
| 319 |
-
raise HTTPException(status_code=503, detail="Colorization model not loaded")
|
| 320 |
-
|
| 321 |
-
if not file.content_type or not file.content_type.startswith("image/"):
|
| 322 |
-
raise HTTPException(status_code=400, detail="File must be an image")
|
| 323 |
-
|
| 324 |
try:
|
| 325 |
img_bytes = await file.read()
|
| 326 |
image = Image.open(io.BytesIO(img_bytes)).convert("RGB")
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
colorized = colorize_pil(image)
|
| 330 |
-
|
| 331 |
output_filename = f"{uuid.uuid4()}.png"
|
| 332 |
-
output_path = RESULT_DIR
|
| 333 |
-
colorized.save(output_path
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
# Return the image file
|
| 338 |
-
return FileResponse(
|
| 339 |
-
output_path,
|
| 340 |
-
media_type="image/png",
|
| 341 |
-
filename=f"colorized_{output_filename}"
|
| 342 |
-
)
|
| 343 |
except Exception as e:
|
| 344 |
-
|
| 345 |
-
raise HTTPException(status_code=500, detail=f"Error colorizing image: {str(e)}")
|
| 346 |
|
| 347 |
# ==========================================================
|
| 348 |
-
#
|
| 349 |
# ==========================================================
|
| 350 |
-
def
|
| 351 |
-
|
| 352 |
-
if image is None:
|
| 353 |
-
return None
|
| 354 |
-
try:
|
| 355 |
-
if learn is None:
|
| 356 |
-
return None
|
| 357 |
-
return colorize_pil(image)
|
| 358 |
-
except Exception as e:
|
| 359 |
-
logger.error("Gradio colorization error: %s", str(e))
|
| 360 |
-
return None
|
| 361 |
|
| 362 |
-
title = "🎨 FastAI
|
| 363 |
-
description = "Upload a black & white photo to
|
| 364 |
|
| 365 |
iface = gr.Interface(
|
| 366 |
-
fn=
|
| 367 |
-
inputs=gr.Image(type="pil", label="Upload
|
| 368 |
-
outputs=gr.Image(type="pil", label="Colorized
|
| 369 |
title=title,
|
| 370 |
description=description,
|
| 371 |
)
|
| 372 |
|
| 373 |
-
|
| 374 |
-
# Note: This will override the root endpoint, so use /api for API info
|
| 375 |
-
app = gr.mount_gradio_app(app, iface, path="/")
|
| 376 |
|
| 377 |
# ==========================================================
|
| 378 |
-
#
|
| 379 |
# ==========================================================
|
| 380 |
if __name__ == "__main__":
|
| 381 |
-
|
| 382 |
-
uvicorn.run(app, host="0.0.0.0", port=port)
|
| 383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import io
|
| 2 |
import uuid
|
| 3 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
+
from fastapi import FastAPI, UploadFile, File
|
| 6 |
+
from fastapi.responses import FileResponse
|
| 7 |
+
from huggingface_hub import from_pretrained_fastai
|
| 8 |
+
import gradio as gr
|
| 9 |
import torch
|
| 10 |
import uvicorn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
# ==========================================================
|
| 13 |
+
# 🔧 CONFIGURATION
|
| 14 |
+
# ==========================================================
|
| 15 |
+
MODEL_ID = "Hammad712/GAN-Colorization-Model" # 👉 change this if you want another model
|
| 16 |
|
| 17 |
+
UPLOAD_DIR = "/tmp/uploads"
|
| 18 |
+
RESULT_DIR = "/tmp/results"
|
| 19 |
+
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
| 20 |
+
os.makedirs(RESULT_DIR, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
# ==========================================================
|
| 23 |
+
# 🚀 LOAD MODEL
|
| 24 |
+
# ==========================================================
|
| 25 |
+
print(f"Loading model: {MODEL_ID}")
|
| 26 |
+
learn = from_pretrained_fastai(MODEL_ID)
|
| 27 |
+
print("✅ Model loaded successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
# ==========================================================
|
| 30 |
+
# 🧠 Colorization Function
|
| 31 |
+
# ==========================================================
|
| 32 |
+
def colorize_image(image: Image.Image):
|
| 33 |
if image.mode != "RGB":
|
| 34 |
image = image.convert("RGB")
|
| 35 |
+
pred = learn.predict(image)[0]
|
| 36 |
+
return pred
|
| 37 |
+
|
| 38 |
+
# ==========================================================
|
| 39 |
+
# 🌐 FASTAPI APP
|
| 40 |
+
# ==========================================================
|
| 41 |
+
app = FastAPI(title="Image Colorization API")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
@app.post("/colorize")
|
| 44 |
+
async def colorize_endpoint(file: UploadFile = File(...)):
|
|
|
|
|
|
|
|
|
|
| 45 |
"""
|
| 46 |
+
Upload a black & white image -> get colorized image
|
|
|
|
| 47 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
try:
|
| 49 |
img_bytes = await file.read()
|
| 50 |
image = Image.open(io.BytesIO(img_bytes)).convert("RGB")
|
| 51 |
+
|
| 52 |
+
colorized = colorize_image(image)
|
|
|
|
|
|
|
| 53 |
output_filename = f"{uuid.uuid4()}.png"
|
| 54 |
+
output_path = os.path.join(RESULT_DIR, output_filename)
|
| 55 |
+
colorized.save(output_path)
|
| 56 |
+
|
| 57 |
+
return FileResponse(output_path, media_type="image/png")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
except Exception as e:
|
| 59 |
+
return {"error": str(e)}
|
|
|
|
| 60 |
|
| 61 |
# ==========================================================
|
| 62 |
+
# 🎨 GRADIO INTERFACE
|
| 63 |
# ==========================================================
|
| 64 |
+
def gradio_interface(image):
|
| 65 |
+
return colorize_image(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
title = "🎨 FastAI / HuggingFace Image Colorizer"
|
| 68 |
+
description = "Upload a black & white photo to get a colorized version."
|
| 69 |
|
| 70 |
iface = gr.Interface(
|
| 71 |
+
fn=gradio_interface,
|
| 72 |
+
inputs=gr.Image(type="pil", label="Upload Image"),
|
| 73 |
+
outputs=gr.Image(type="pil", label="Colorized Output"),
|
| 74 |
title=title,
|
| 75 |
description=description,
|
| 76 |
)
|
| 77 |
|
| 78 |
+
gradio_app = gr.mount_gradio_app(app, iface, path="/")
|
|
|
|
|
|
|
| 79 |
|
| 80 |
# ==========================================================
|
| 81 |
+
# ▶️ RUN LOCALLY OR IN HUGGINGFACE SPACE
|
| 82 |
# ==========================================================
|
| 83 |
if __name__ == "__main__":
|
| 84 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
|