Commit
·
0a1a3e1
1
Parent(s):
293fc40
Fix image colorization: Add PyTorch GAN colorizer fallback, update Dockerfile to use main_fastai, and add missing dependencies
Browse files- Dockerfile +1 -1
- app/main_fastai.py +68 -39
- app/pytorch_colorizer.py +247 -0
- requirements.txt +4 -1
Dockerfile
CHANGED
|
@@ -63,4 +63,4 @@ HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
|
|
| 63 |
ENTRYPOINT ["/entrypoint.sh"]
|
| 64 |
|
| 65 |
# Run the application (port will be set via environment variable)
|
| 66 |
-
CMD ["sh", "-c", "uvicorn app.
|
|
|
|
| 63 |
ENTRYPOINT ["/entrypoint.sh"]
|
| 64 |
|
| 65 |
# Run the application (port will be set via environment variable)
|
| 66 |
+
CMD ["sh", "-c", "uvicorn app.main_fastai:app --host 0.0.0.0 --port ${PORT:-7860}"]
|
app/main_fastai.py
CHANGED
|
@@ -34,6 +34,7 @@ from fastai.vision.all import *
|
|
| 34 |
from huggingface_hub import from_pretrained_fastai
|
| 35 |
|
| 36 |
from app.config import settings
|
|
|
|
| 37 |
|
| 38 |
# Configure logging
|
| 39 |
logging.basicConfig(
|
|
@@ -94,30 +95,50 @@ app.mount("/uploads", StaticFiles(directory=str(UPLOAD_DIR)), name="uploads")
|
|
| 94 |
|
| 95 |
# Initialize FastAI model
|
| 96 |
learn = None
|
|
|
|
| 97 |
model_load_error: Optional[str] = None
|
|
|
|
| 98 |
|
| 99 |
@app.on_event("startup")
|
| 100 |
async def startup_event():
|
| 101 |
-
"""Load FastAI model on startup"""
|
| 102 |
-
global learn, model_load_error
|
|
|
|
|
|
|
|
|
|
| 103 |
try:
|
| 104 |
-
|
| 105 |
-
logger.info("🔄 Loading FastAI GAN Colorization Model: %s", model_id)
|
| 106 |
learn = from_pretrained_fastai(model_id)
|
| 107 |
-
logger.info("✅
|
|
|
|
| 108 |
model_load_error = None
|
|
|
|
| 109 |
except Exception as e:
|
| 110 |
error_msg = str(e)
|
| 111 |
-
logger.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
model_load_error = error_msg
|
|
|
|
| 113 |
# Don't raise - allow health check to work
|
| 114 |
|
| 115 |
@app.on_event("shutdown")
|
| 116 |
async def shutdown_event():
|
| 117 |
"""Cleanup on shutdown"""
|
| 118 |
-
global learn
|
| 119 |
if learn:
|
| 120 |
del learn
|
|
|
|
|
|
|
| 121 |
logger.info("Application shutdown")
|
| 122 |
|
| 123 |
def _extract_bearer_token(authorization_header: str | None) -> str | None:
|
|
@@ -182,7 +203,8 @@ async def health_check():
|
|
| 182 |
"""Health check endpoint"""
|
| 183 |
response = {
|
| 184 |
"status": "healthy",
|
| 185 |
-
"model_loaded": learn is not None,
|
|
|
|
| 186 |
"model_id": os.getenv("MODEL_ID", "Hammad712/GAN-Colorization-Model")
|
| 187 |
}
|
| 188 |
if model_load_error:
|
|
@@ -191,38 +213,45 @@ async def health_check():
|
|
| 191 |
|
| 192 |
def colorize_pil(image: Image.Image) -> Image.Image:
|
| 193 |
"""Run model prediction and return colorized image"""
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
else:
|
| 203 |
-
colorized = pred
|
| 204 |
-
|
| 205 |
-
# Ensure we have a PIL Image
|
| 206 |
-
if not isinstance(colorized, Image.Image):
|
| 207 |
-
if isinstance(colorized, torch.Tensor):
|
| 208 |
-
# Convert tensor to PIL
|
| 209 |
-
if colorized.dim() == 4:
|
| 210 |
-
colorized = colorized[0]
|
| 211 |
-
if colorized.dim() == 3:
|
| 212 |
-
colorized = colorized.permute(1, 2, 0).cpu()
|
| 213 |
-
if colorized.dtype in (torch.float32, torch.float16):
|
| 214 |
-
colorized = torch.clamp(colorized, 0, 1)
|
| 215 |
-
colorized = (colorized * 255).byte()
|
| 216 |
-
colorized = Image.fromarray(colorized.numpy(), 'RGB')
|
| 217 |
-
else:
|
| 218 |
-
raise ValueError(f"Unexpected tensor shape: {colorized.shape}")
|
| 219 |
else:
|
| 220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
-
|
| 223 |
-
|
|
|
|
| 224 |
|
| 225 |
-
|
|
|
|
| 226 |
|
| 227 |
@app.post("/colorize")
|
| 228 |
async def colorize_api(
|
|
@@ -233,7 +262,7 @@ async def colorize_api(
|
|
| 233 |
Upload a black & white image -> returns colorized image.
|
| 234 |
Requires Firebase authentication unless DISABLE_AUTH=true
|
| 235 |
"""
|
| 236 |
-
if learn is None:
|
| 237 |
raise HTTPException(status_code=503, detail="Colorization model not loaded")
|
| 238 |
|
| 239 |
if not file.content_type or not file.content_type.startswith("image/"):
|
|
@@ -270,7 +299,7 @@ def gradio_colorize(image):
|
|
| 270 |
if image is None:
|
| 271 |
return None
|
| 272 |
try:
|
| 273 |
-
if learn is None:
|
| 274 |
return None
|
| 275 |
return colorize_pil(image)
|
| 276 |
except Exception as e:
|
|
|
|
| 34 |
from huggingface_hub import from_pretrained_fastai
|
| 35 |
|
| 36 |
from app.config import settings
|
| 37 |
+
from app.pytorch_colorizer import PyTorchColorizer
|
| 38 |
|
| 39 |
# Configure logging
|
| 40 |
logging.basicConfig(
|
|
|
|
| 95 |
|
| 96 |
# Initialize FastAI model
|
| 97 |
learn = None
|
| 98 |
+
pytorch_colorizer = None
|
| 99 |
model_load_error: Optional[str] = None
|
| 100 |
+
model_type: str = "none" # "fastai", "pytorch", or "none"
|
| 101 |
|
| 102 |
@app.on_event("startup")
|
| 103 |
async def startup_event():
|
| 104 |
+
"""Load FastAI or PyTorch model on startup"""
|
| 105 |
+
global learn, pytorch_colorizer, model_load_error, model_type
|
| 106 |
+
model_id = os.getenv("MODEL_ID", "Hammad712/GAN-Colorization-Model")
|
| 107 |
+
|
| 108 |
+
# Try FastAI first
|
| 109 |
try:
|
| 110 |
+
logger.info("🔄 Attempting to load FastAI GAN Colorization Model: %s", model_id)
|
|
|
|
| 111 |
learn = from_pretrained_fastai(model_id)
|
| 112 |
+
logger.info("✅ FastAI model loaded successfully!")
|
| 113 |
+
model_type = "fastai"
|
| 114 |
model_load_error = None
|
| 115 |
+
return
|
| 116 |
except Exception as e:
|
| 117 |
error_msg = str(e)
|
| 118 |
+
logger.warning("⚠️ FastAI model loading failed: %s. Trying PyTorch fallback...", error_msg)
|
| 119 |
+
|
| 120 |
+
# Fallback to PyTorch
|
| 121 |
+
try:
|
| 122 |
+
logger.info("🔄 Attempting to load PyTorch GAN Colorization Model: %s", model_id)
|
| 123 |
+
pytorch_colorizer = PyTorchColorizer(model_id=model_id, model_filename="generator.pt")
|
| 124 |
+
logger.info("✅ PyTorch model loaded successfully!")
|
| 125 |
+
model_type = "pytorch"
|
| 126 |
+
model_load_error = None
|
| 127 |
+
except Exception as e:
|
| 128 |
+
error_msg = str(e)
|
| 129 |
+
logger.error("❌ Failed to load both FastAI and PyTorch models: %s", error_msg)
|
| 130 |
model_load_error = error_msg
|
| 131 |
+
model_type = "none"
|
| 132 |
# Don't raise - allow health check to work
|
| 133 |
|
| 134 |
@app.on_event("shutdown")
|
| 135 |
async def shutdown_event():
|
| 136 |
"""Cleanup on shutdown"""
|
| 137 |
+
global learn, pytorch_colorizer
|
| 138 |
if learn:
|
| 139 |
del learn
|
| 140 |
+
if pytorch_colorizer:
|
| 141 |
+
del pytorch_colorizer
|
| 142 |
logger.info("Application shutdown")
|
| 143 |
|
| 144 |
def _extract_bearer_token(authorization_header: str | None) -> str | None:
|
|
|
|
| 203 |
"""Health check endpoint"""
|
| 204 |
response = {
|
| 205 |
"status": "healthy",
|
| 206 |
+
"model_loaded": (learn is not None) or (pytorch_colorizer is not None),
|
| 207 |
+
"model_type": model_type,
|
| 208 |
"model_id": os.getenv("MODEL_ID", "Hammad712/GAN-Colorization-Model")
|
| 209 |
}
|
| 210 |
if model_load_error:
|
|
|
|
| 213 |
|
| 214 |
def colorize_pil(image: Image.Image) -> Image.Image:
|
| 215 |
"""Run model prediction and return colorized image"""
|
| 216 |
+
# Try FastAI first
|
| 217 |
+
if learn is not None:
|
| 218 |
+
if image.mode != "RGB":
|
| 219 |
+
image = image.convert("RGB")
|
| 220 |
+
pred = learn.predict(image)
|
| 221 |
+
# Handle different return types from FastAI
|
| 222 |
+
if isinstance(pred, (list, tuple)):
|
| 223 |
+
colorized = pred[0] if len(pred) > 0 else image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
else:
|
| 225 |
+
colorized = pred
|
| 226 |
+
|
| 227 |
+
# Ensure we have a PIL Image
|
| 228 |
+
if not isinstance(colorized, Image.Image):
|
| 229 |
+
if isinstance(colorized, torch.Tensor):
|
| 230 |
+
# Convert tensor to PIL
|
| 231 |
+
if colorized.dim() == 4:
|
| 232 |
+
colorized = colorized[0]
|
| 233 |
+
if colorized.dim() == 3:
|
| 234 |
+
colorized = colorized.permute(1, 2, 0).cpu()
|
| 235 |
+
if colorized.dtype in (torch.float32, torch.float16):
|
| 236 |
+
colorized = torch.clamp(colorized, 0, 1)
|
| 237 |
+
colorized = (colorized * 255).byte()
|
| 238 |
+
colorized = Image.fromarray(colorized.numpy(), 'RGB')
|
| 239 |
+
else:
|
| 240 |
+
raise ValueError(f"Unexpected tensor shape: {colorized.shape}")
|
| 241 |
+
else:
|
| 242 |
+
raise ValueError(f"Unexpected prediction type: {type(colorized)}")
|
| 243 |
+
|
| 244 |
+
if colorized.mode != "RGB":
|
| 245 |
+
colorized = colorized.convert("RGB")
|
| 246 |
+
|
| 247 |
+
return colorized
|
| 248 |
|
| 249 |
+
# Fallback to PyTorch
|
| 250 |
+
elif pytorch_colorizer is not None:
|
| 251 |
+
return pytorch_colorizer.colorize(image)
|
| 252 |
|
| 253 |
+
else:
|
| 254 |
+
raise RuntimeError("No colorization model loaded")
|
| 255 |
|
| 256 |
@app.post("/colorize")
|
| 257 |
async def colorize_api(
|
|
|
|
| 262 |
Upload a black & white image -> returns colorized image.
|
| 263 |
Requires Firebase authentication unless DISABLE_AUTH=true
|
| 264 |
"""
|
| 265 |
+
if learn is None and pytorch_colorizer is None:
|
| 266 |
raise HTTPException(status_code=503, detail="Colorization model not loaded")
|
| 267 |
|
| 268 |
if not file.content_type or not file.content_type.startswith("image/"):
|
|
|
|
| 299 |
if image is None:
|
| 300 |
return None
|
| 301 |
try:
|
| 302 |
+
if learn is None and pytorch_colorizer is None:
|
| 303 |
return None
|
| 304 |
return colorize_pil(image)
|
| 305 |
except Exception as e:
|
app/pytorch_colorizer.py
ADDED
|
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
PyTorch GAN Colorization Model Loader
|
| 3 |
+
Handles loading and inference for PyTorch GAN colorization models
|
| 4 |
+
"""
|
| 5 |
+
import functools
|
| 6 |
+
import logging
|
| 7 |
+
import os
|
| 8 |
+
from typing import Tuple
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
from PIL import Image
|
| 13 |
+
from torchvision import transforms
|
| 14 |
+
from huggingface_hub import hf_hub_download
|
| 15 |
+
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class UNetGenerator(nn.Module):
|
| 20 |
+
"""
|
| 21 |
+
U-Net Generator for Image Colorization
|
| 22 |
+
Common architecture for GAN-based colorization models
|
| 23 |
+
"""
|
| 24 |
+
def __init__(self, input_nc=1, output_nc=3, num_downs=8, ngf=64, use_dropout=False):
|
| 25 |
+
super(UNetGenerator, self).__init__()
|
| 26 |
+
|
| 27 |
+
# Build U-Net
|
| 28 |
+
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None,
|
| 29 |
+
norm_layer=nn.BatchNorm2d, innermost=True)
|
| 30 |
+
for i in range(num_downs - 5):
|
| 31 |
+
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None,
|
| 32 |
+
submodule=unet_block, norm_layer=nn.BatchNorm2d,
|
| 33 |
+
use_dropout=use_dropout)
|
| 34 |
+
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None,
|
| 35 |
+
submodule=unet_block, norm_layer=nn.BatchNorm2d)
|
| 36 |
+
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None,
|
| 37 |
+
submodule=unet_block, norm_layer=nn.BatchNorm2d)
|
| 38 |
+
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None,
|
| 39 |
+
submodule=unet_block, norm_layer=nn.BatchNorm2d)
|
| 40 |
+
self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc,
|
| 41 |
+
submodule=unet_block, outermost=True,
|
| 42 |
+
norm_layer=nn.BatchNorm2d)
|
| 43 |
+
|
| 44 |
+
def forward(self, input):
|
| 45 |
+
return self.model(input)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class UnetSkipConnectionBlock(nn.Module):
|
| 49 |
+
"""Defines the Unet submodule with skip connection"""
|
| 50 |
+
def __init__(self, outer_nc, inner_nc, input_nc=None,
|
| 51 |
+
submodule=None, outermost=False, innermost=False,
|
| 52 |
+
norm_layer=nn.BatchNorm2d, use_dropout=False):
|
| 53 |
+
super(UnetSkipConnectionBlock, self).__init__()
|
| 54 |
+
self.outermost = outermost
|
| 55 |
+
if type(norm_layer) == functools.partial:
|
| 56 |
+
use_bias = norm_layer.func == nn.InstanceNorm2d
|
| 57 |
+
else:
|
| 58 |
+
use_bias = norm_layer == nn.InstanceNorm2d
|
| 59 |
+
if input_nc is None:
|
| 60 |
+
input_nc = outer_nc
|
| 61 |
+
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
|
| 62 |
+
stride=2, padding=1, bias=use_bias)
|
| 63 |
+
downrelu = nn.LeakyReLU(0.2, True)
|
| 64 |
+
downnorm = norm_layer(inner_nc)
|
| 65 |
+
uprelu = nn.ReLU(True)
|
| 66 |
+
upnorm = norm_layer(outer_nc)
|
| 67 |
+
|
| 68 |
+
if outermost:
|
| 69 |
+
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
|
| 70 |
+
kernel_size=4, stride=2,
|
| 71 |
+
padding=1)
|
| 72 |
+
down = [downconv]
|
| 73 |
+
up = [uprelu, upconv, nn.Tanh()]
|
| 74 |
+
model = down + [submodule] + up
|
| 75 |
+
elif innermost:
|
| 76 |
+
upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
|
| 77 |
+
kernel_size=4, stride=2,
|
| 78 |
+
padding=1, bias=use_bias)
|
| 79 |
+
down = [downrelu, downconv]
|
| 80 |
+
up = [uprelu, upconv, upnorm]
|
| 81 |
+
model = down + up
|
| 82 |
+
else:
|
| 83 |
+
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
|
| 84 |
+
kernel_size=4, stride=2,
|
| 85 |
+
padding=1, bias=use_bias)
|
| 86 |
+
down = [downrelu, downconv, downnorm]
|
| 87 |
+
up = [uprelu, upconv, upnorm]
|
| 88 |
+
|
| 89 |
+
if use_dropout:
|
| 90 |
+
model = down + [submodule] + up + [nn.Dropout(0.5)]
|
| 91 |
+
else:
|
| 92 |
+
model = down + [submodule] + up
|
| 93 |
+
|
| 94 |
+
self.model = nn.Sequential(*model)
|
| 95 |
+
|
| 96 |
+
def forward(self, x):
|
| 97 |
+
if self.outermost:
|
| 98 |
+
return self.model(x)
|
| 99 |
+
else:
|
| 100 |
+
return torch.cat([x, self.model(x)], 1)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
class PyTorchColorizer:
|
| 104 |
+
"""PyTorch GAN Colorization Model"""
|
| 105 |
+
|
| 106 |
+
def __init__(self, model_id: str = "Hammad712/GAN-Colorization-Model", model_filename: str = "generator.pt"):
|
| 107 |
+
self.model_id = model_id
|
| 108 |
+
self.model_filename = model_filename
|
| 109 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 110 |
+
self.model = None
|
| 111 |
+
self.cache_dir = os.environ.get("HF_HOME", "/tmp/hf_cache")
|
| 112 |
+
|
| 113 |
+
logger.info(f"Loading PyTorch GAN colorization model: {model_id}/{model_filename}")
|
| 114 |
+
self._load_model()
|
| 115 |
+
|
| 116 |
+
def _load_model(self):
|
| 117 |
+
"""Load the PyTorch model"""
|
| 118 |
+
try:
|
| 119 |
+
# Download model file
|
| 120 |
+
model_path = hf_hub_download(
|
| 121 |
+
repo_id=self.model_id,
|
| 122 |
+
filename=self.model_filename,
|
| 123 |
+
cache_dir=self.cache_dir
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
logger.info(f"Model downloaded to: {model_path}")
|
| 127 |
+
|
| 128 |
+
# Try loading the model file
|
| 129 |
+
# First, try loading as a complete model (if saved with torch.save(model, path))
|
| 130 |
+
try:
|
| 131 |
+
loaded_obj = torch.load(model_path, map_location=self.device)
|
| 132 |
+
|
| 133 |
+
# Check if it's already a model instance
|
| 134 |
+
if isinstance(loaded_obj, nn.Module):
|
| 135 |
+
self.model = loaded_obj
|
| 136 |
+
self.model.eval()
|
| 137 |
+
self.model.to(self.device)
|
| 138 |
+
logger.info("✅ Loaded complete model object")
|
| 139 |
+
return
|
| 140 |
+
|
| 141 |
+
# Otherwise, it's likely a state_dict
|
| 142 |
+
state_dict = loaded_obj
|
| 143 |
+
|
| 144 |
+
except Exception as e:
|
| 145 |
+
logger.error(f"Failed to load model file: {e}")
|
| 146 |
+
raise
|
| 147 |
+
|
| 148 |
+
# Try different model architectures with state_dict
|
| 149 |
+
model_configs = [
|
| 150 |
+
{"input_nc": 1, "output_nc": 3, "num_downs": 8, "ngf": 64},
|
| 151 |
+
{"input_nc": 1, "output_nc": 3, "num_downs": 7, "ngf": 64},
|
| 152 |
+
{"input_nc": 1, "output_nc": 3, "num_downs": 8, "ngf": 32},
|
| 153 |
+
{"input_nc": 1, "output_nc": 3, "num_downs": 6, "ngf": 64},
|
| 154 |
+
]
|
| 155 |
+
|
| 156 |
+
loaded = False
|
| 157 |
+
for config in model_configs:
|
| 158 |
+
try:
|
| 159 |
+
model = UNetGenerator(**config)
|
| 160 |
+
# Try strict loading first
|
| 161 |
+
try:
|
| 162 |
+
model.load_state_dict(state_dict, strict=True)
|
| 163 |
+
logger.info(f"✅ Successfully loaded model with strict matching: {config}")
|
| 164 |
+
except:
|
| 165 |
+
# If strict fails, try non-strict
|
| 166 |
+
model.load_state_dict(state_dict, strict=False)
|
| 167 |
+
logger.info(f"✅ Successfully loaded model with non-strict matching: {config}")
|
| 168 |
+
|
| 169 |
+
model.eval()
|
| 170 |
+
model.to(self.device)
|
| 171 |
+
self.model = model
|
| 172 |
+
loaded = True
|
| 173 |
+
break
|
| 174 |
+
except Exception as e:
|
| 175 |
+
logger.debug(f"Failed to load with config {config}: {e}")
|
| 176 |
+
continue
|
| 177 |
+
|
| 178 |
+
if not loaded:
|
| 179 |
+
# Last resort: try with default config and non-strict loading
|
| 180 |
+
try:
|
| 181 |
+
logger.warning("Attempting to load model with default config and non-strict matching")
|
| 182 |
+
model = UNetGenerator(input_nc=1, output_nc=3, num_downs=8, ngf=64)
|
| 183 |
+
model.load_state_dict(state_dict, strict=False)
|
| 184 |
+
model.eval()
|
| 185 |
+
model.to(self.device)
|
| 186 |
+
self.model = model
|
| 187 |
+
logger.info("✅ Model loaded with fallback method")
|
| 188 |
+
except Exception as e:
|
| 189 |
+
logger.error(f"Failed to load model: {e}")
|
| 190 |
+
raise RuntimeError(
|
| 191 |
+
f"Could not load PyTorch model. Tried multiple architectures. "
|
| 192 |
+
f"Last error: {e}. "
|
| 193 |
+
f"The model architecture may not match the expected U-Net structure."
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
except Exception as e:
|
| 197 |
+
logger.error(f"Error loading PyTorch model: {e}")
|
| 198 |
+
raise RuntimeError(f"Failed to load PyTorch colorization model: {e}")
|
| 199 |
+
|
| 200 |
+
def colorize(self, image: Image.Image) -> Image.Image:
|
| 201 |
+
"""
|
| 202 |
+
Colorize a grayscale or color image
|
| 203 |
+
|
| 204 |
+
Args:
|
| 205 |
+
image: PIL Image (will be converted to grayscale if color)
|
| 206 |
+
|
| 207 |
+
Returns:
|
| 208 |
+
Colorized PIL Image
|
| 209 |
+
"""
|
| 210 |
+
if self.model is None:
|
| 211 |
+
raise RuntimeError("Model not loaded")
|
| 212 |
+
|
| 213 |
+
original_size = image.size
|
| 214 |
+
|
| 215 |
+
# Convert to grayscale if needed
|
| 216 |
+
if image.mode != "L":
|
| 217 |
+
image = image.convert("L")
|
| 218 |
+
|
| 219 |
+
# Transform to tensor
|
| 220 |
+
transform = transforms.Compose([
|
| 221 |
+
transforms.Resize((256, 256)), # Common size for GAN models
|
| 222 |
+
transforms.ToTensor(),
|
| 223 |
+
transforms.Normalize(mean=[0.5], std=[0.5]) # Normalize to [-1, 1]
|
| 224 |
+
])
|
| 225 |
+
|
| 226 |
+
input_tensor = transform(image).unsqueeze(0).to(self.device)
|
| 227 |
+
|
| 228 |
+
# Run inference
|
| 229 |
+
with torch.no_grad():
|
| 230 |
+
output_tensor = self.model(input_tensor)
|
| 231 |
+
|
| 232 |
+
# Convert output back to PIL Image
|
| 233 |
+
# Output is typically in range [-1, 1] from Tanh activation
|
| 234 |
+
output_tensor = output_tensor.squeeze(0).cpu()
|
| 235 |
+
output_tensor = (output_tensor + 1) / 2.0 # Denormalize from [-1, 1] to [0, 1]
|
| 236 |
+
output_tensor = torch.clamp(output_tensor, 0, 1)
|
| 237 |
+
|
| 238 |
+
# Convert to numpy and then PIL
|
| 239 |
+
output_array = (output_tensor.permute(1, 2, 0).numpy() * 255).astype('uint8')
|
| 240 |
+
output_image = Image.fromarray(output_array, 'RGB')
|
| 241 |
+
|
| 242 |
+
# Resize back to original size
|
| 243 |
+
if output_image.size != original_size:
|
| 244 |
+
output_image = output_image.resize(original_size, Image.Resampling.LANCZOS)
|
| 245 |
+
|
| 246 |
+
return output_image
|
| 247 |
+
|
requirements.txt
CHANGED
|
@@ -4,4 +4,7 @@ fastapi
|
|
| 4 |
uvicorn
|
| 5 |
gradio
|
| 6 |
pillow
|
| 7 |
-
firebase-admin
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
uvicorn
|
| 5 |
gradio
|
| 6 |
pillow
|
| 7 |
+
firebase-admin
|
| 8 |
+
fastai
|
| 9 |
+
huggingface_hub
|
| 10 |
+
pydantic-settings
|