File size: 7,680 Bytes
60c56d7 8d0a1ae 60c56d7 8f6f449 60c56d7 7471c96 8f6f449 60c56d7 8d0a1ae 8f6f449 2ae242d 60c56d7 8f6f449 8d0a1ae 8f6f449 f79a7fe 8d0a1ae 8f6f449 8d0a1ae 8f6f449 60c56d7 8d0a1ae 8f6f449 8d0a1ae f79a7fe 8d0a1ae f79a7fe 8d0a1ae 7471c96 f79a7fe 8f6f449 7471c96 8d0a1ae f79a7fe 8d0a1ae 8f6f449 8d0a1ae 8f6f449 8d0a1ae bdef219 8d0a1ae bdef219 f79a7fe 8d0a1ae 8f6f449 f79a7fe 8f6f449 8d0a1ae 8f6f449 f79a7fe 8d0a1ae f79a7fe 8d0a1ae f79a7fe 8d0a1ae f79a7fe 60c56d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
"""
Colorize model wrapper replicating the behaviour of the
`fffiloni/text-guided-image-colorization` Space.
"""
from __future__ import annotations
import logging
import os
from typing import Tuple
import torch
from PIL import Image
from diffusers import (
AutoencoderKL,
ControlNetModel,
StableDiffusionXLControlNetPipeline,
UNet2DConditionModel,
)
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from transformers import BlipForConditionalGeneration, BlipProcessor
from app.config import settings
logger = logging.getLogger(__name__)
def _ensure_cache_dir() -> str:
cache_dir = os.environ.get("HF_HOME") or "/tmp/hf_cache"
try:
os.makedirs(cache_dir, exist_ok=True)
except Exception as exc: # pragma: no cover
logger.warning("Could not create cache directory %s: %s", cache_dir, exc)
os.environ["HF_HOME"] = cache_dir
os.environ["TRANSFORMERS_CACHE"] = cache_dir
os.environ["HUGGINGFACE_HUB_CACHE"] = cache_dir
os.environ["HF_HUB_CACHE"] = cache_dir
return cache_dir
def _apply_lab_merge(original_luminance: Image.Image, color_map: Image.Image) -> Image.Image:
base_lab = original_luminance.convert("LAB")
color_lab = color_map.convert("LAB")
l_channel, _, _ = base_lab.split()
_, a_channel, b_channel = color_lab.split()
merged = Image.merge("LAB", (l_channel, a_channel, b_channel))
return merged.convert("RGB")
def _clean_caption(prompt: str) -> str:
remove_terms = [
"black and white", "black & white", "monochrome", "bw photo",
"historical", "restored", "low contrast", "desaturated", "overcast",
]
cleaned = prompt
for term in remove_terms:
cleaned = cleaned.replace(term, "")
return cleaned.strip(" ,")
class ColorizeModel:
"""Colorization model that runs the SDXL + ControlNet pipeline locally."""
def __init__(self, model_id: str | None = None) -> None:
self.cache_dir = _ensure_cache_dir()
self.hf_token = (
os.getenv("HF_TOKEN")
or os.getenv("HUGGINGFACE_HUB_TOKEN")
or os.getenv("HUGGINGFACE_API_TOKEN")
)
if not self.hf_token:
logger.warning("HF token not provided – attempting to download public models only.")
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.dtype = torch.float16 if self.device.type == "cuda" else torch.float32
os.environ.setdefault("OMP_NUM_THREADS", "1")
self.controlnet_id = model_id or settings.MODEL_ID
self.base_model_id = settings.BASE_MODEL_ID
self.lightning_repo = settings.LIGHTNING_REPO
self.lightning_weights = settings.LIGHTNING_WEIGHTS
self.caption_model_id = settings.CAPTION_MODEL_ID
self.num_inference_steps = settings.NUM_INFERENCE_STEPS
self.guidance_scale = settings.GUIDANCE_SCALE
self.controlnet_scale = settings.CONTROLNET_SCALE
self.positive_prompt = settings.POSITIVE_PROMPT
self.negative_prompt = settings.NEGATIVE_PROMPT
self.caption_prefix = settings.CAPTION_PREFIX
self.seed = settings.COLORIZE_SEED
self._load_caption_model()
self._load_pipeline()
def _load_caption_model(self) -> None:
logger.info("Loading BLIP captioning model: %s", self.caption_model_id)
self.caption_processor = BlipProcessor.from_pretrained(
self.caption_model_id,
cache_dir=self.cache_dir,
token=self.hf_token,
)
self.caption_model = BlipForConditionalGeneration.from_pretrained(
self.caption_model_id,
cache_dir=self.cache_dir,
token=self.hf_token,
torch_dtype=self.dtype if self.device.type == "cuda" else torch.float32,
).to(self.device)
def _load_pipeline(self) -> None:
logger.info("Loading ControlNet model: %s", self.controlnet_id)
controlnet = ControlNetModel.from_pretrained(
self.controlnet_id,
torch_dtype=self.dtype,
cache_dir=self.cache_dir,
token=self.hf_token,
)
logger.info("Loading SDXL base model components: %s", self.base_model_id)
vae = AutoencoderKL.from_pretrained(
self.base_model_id,
subfolder="vae",
torch_dtype=self.dtype,
cache_dir=self.cache_dir,
token=self.hf_token,
)
unet = UNet2DConditionModel.from_config(
self.base_model_id,
subfolder="unet",
cache_dir=self.cache_dir,
token=self.hf_token,
)
lightning_path = hf_hub_download(
repo_id=self.lightning_repo,
filename=self.lightning_weights,
cache_dir=self.cache_dir,
token=self.hf_token,
)
unet.load_state_dict(load_file(lightning_path))
self.pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
self.base_model_id,
vae=vae,
unet=unet,
controlnet=controlnet,
torch_dtype=self.dtype,
cache_dir=self.cache_dir,
token=self.hf_token,
safety_checker=None,
requires_safety_checker=False,
)
self.pipe.set_progress_bar_config(disable=True)
self.pipe.to(self.device, dtype=self.dtype)
if self.device.type == "cuda" and hasattr(self.pipe, "enable_xformers_memory_efficient_attention"):
try:
self.pipe.enable_xformers_memory_efficient_attention()
except Exception as exc: # pragma: no cover
logger.warning("Could not enable xFormers optimizations: %s", exc)
logger.info("Colorization pipeline ready.")
def caption_image(self, image: Image.Image) -> str:
inputs = self.caption_processor(
image,
self.caption_prefix,
return_tensors="pt",
).to(self.device)
if self.device.type != "cuda":
inputs = {k: v.to(torch.float32) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
with torch.inference_mode():
caption_ids = self.caption_model.generate(**inputs)
caption = self.caption_processor.decode(caption_ids[0], skip_special_tokens=True)
return _clean_caption(caption)
def colorize(self, image: Image.Image, num_inference_steps: int | None = None) -> Tuple[Image.Image, str]:
original_size = image.size
control_image = image.convert("L").convert("RGB").resize((512, 512), Image.Resampling.LANCZOS)
caption = self.caption_image(image)
prompt_components = [self.positive_prompt, caption]
prompt = ", ".join([p for p in prompt_components if p])
steps = num_inference_steps or self.num_inference_steps
generator = torch.Generator(device=self.device).manual_seed(self.seed)
logger.info("Running ControlNet pipeline with prompt: %s", prompt)
result = self.pipe(
prompt=prompt,
negative_prompt=self.negative_prompt or None,
image=control_image,
control_image=control_image,
num_inference_steps=steps,
guidance_scale=self.guidance_scale,
controlnet_conditioning_scale=self.controlnet_scale,
generator=generator,
)
generated = result.images[0]
colorized = _apply_lab_merge(control_image, generated)
if colorized.size != original_size:
colorized = colorized.resize(original_size, Image.Resampling.LANCZOS)
return colorized, caption
|