File size: 11,158 Bytes
0ed44c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import os
import uuid
import base64
from io import BytesIO
from typing import Optional
from datetime import datetime

from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from fastapi.responses import JSONResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from PIL import Image

# Try to import Qwen Image Edit model
try:
    import transformers_gradio
    import gradio as gr
    GRADIO_AVAILABLE = True
except ImportError:
    GRADIO_AVAILABLE = False
    print("Warning: gradio/transformers_gradio not available. Using mock mode.")

app = FastAPI(
    title="Nano Banana Image Edit API",
    description="API for Qwen Image Edit model - Upload images and edit them with prompts",
    version="1.0.0"
)

# CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# In-memory storage for tasks (use Redis or database in production)
tasks = {}

# Model initialization - using Gradio interface
gradio_demo = None
gradio_fn = None

def load_model():
    """Load the Qwen Image Edit model using Gradio"""
    global gradio_demo, gradio_fn
    if not GRADIO_AVAILABLE:
        return False
    
    try:
        print("Loading Qwen/Qwen-Image-Edit model via Gradio...")
        gradio_demo = gr.load(name="Qwen/Qwen-Image-Edit", src=transformers_gradio.registry)
        
        # Get the main function from the demo
        # The function signature depends on the model, typically (image, prompt) -> image
        if hasattr(gradio_demo, 'fn'):
            gradio_fn = gradio_demo.fn
        elif hasattr(gradio_demo, 'blocks') and gradio_demo.blocks:
            # Try to find the function from blocks
            for block in gradio_demo.blocks.values():
                if hasattr(block, 'fn') and callable(block.fn):
                    gradio_fn = block.fn
                    break
        
        print("Model loaded successfully")
        return True
    except Exception as e:
        print(f"Error loading model: {e}")
        return False

# Response models
class UploadResponse(BaseModel):
    image_id: str
    message: str
    timestamp: str

class EditRequest(BaseModel):
    image_id: str
    prompt: str

class EditResponse(BaseModel):
    task_id: str
    status: str
    message: str
    timestamp: str

class ResultResponse(BaseModel):
    task_id: str
    status: str
    result_image_id: Optional[str] = None
    result_image_url: Optional[str] = None
    error: Optional[str] = None
    timestamp: str

class ErrorResponse(BaseModel):
    error: str
    detail: Optional[str] = None

@app.on_event("startup")
async def startup_event():
    """Initialize model on startup"""
    if GRADIO_AVAILABLE:
        load_model()

@app.get("/")
async def root():
    """Root endpoint"""
    return {
        "message": "Nano Banana Image Edit API",
        "version": "1.0.0",
        "endpoints": {
            "upload": "/upload",
            "edit": "/edit",
            "result": "/result/{task_id}",
            "health": "/health"
        }
    }

@app.get("/health")
async def health():
    """Health check endpoint"""
    return {
        "status": "healthy",
        "model_loaded": gradio_fn is not None if GRADIO_AVAILABLE else False,
        "model_available": GRADIO_AVAILABLE
    }

@app.post("/upload", response_model=UploadResponse)
async def upload_image(file: UploadFile = File(...)):
    """
    Upload an image file
    
    Returns:
        image_id: Unique identifier for the uploaded image
    """
    # Validate file type
    if not file.content_type or not file.content_type.startswith('image/'):
        raise HTTPException(status_code=400, detail="File must be an image")
    
    try:
        # Read image
        image_data = await file.read()
        image = Image.open(BytesIO(image_data))
        
        # Validate image
        image.verify()
        image = Image.open(BytesIO(image_data))  # Reopen after verify
        
        # Generate unique ID
        image_id = str(uuid.uuid4())
        
        # Store image (in production, use proper storage like S3, Azure Blob, etc.)
        os.makedirs("uploads", exist_ok=True)
        image_path = f"uploads/{image_id}.{image.format.lower()}"
        image.save(image_path)
        
        # Store metadata
        tasks[image_id] = {
            "type": "image",
            "path": image_path,
            "format": image.format,
            "size": image.size,
            "uploaded_at": datetime.now().isoformat()
        }
        
        return UploadResponse(
            image_id=image_id,
            message="Image uploaded successfully",
            timestamp=datetime.now().isoformat()
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")

@app.post("/edit", response_model=EditResponse)
async def edit_image(
    image_id: str = Form(...),
    prompt: str = Form(...)
):
    """
    Edit an image using a text prompt
    
    Parameters:
        image_id: ID of the uploaded image
        prompt: Text prompt describing the desired edit
    
    Returns:
        task_id: Unique identifier for the editing task
    """
    # Validate image exists
    if image_id not in tasks or tasks[image_id]["type"] != "image":
        raise HTTPException(status_code=404, detail="Image not found")
    
    # Generate task ID
    task_id = str(uuid.uuid4())
    
    try:
        # Load image
        image_path = tasks[image_id]["path"]
        image = Image.open(image_path)
        
        # Process image with model
        if GRADIO_AVAILABLE and gradio_fn is not None:
            try:
                # Call the Gradio function with image and prompt
                # The function signature should be (image, prompt) -> image
                result = gradio_fn(image, prompt)
                
                # Handle different return types
                if isinstance(result, tuple):
                    edited_image = result[0]  # First element is usually the image
                elif isinstance(result, dict):
                    edited_image = result.get('image', result.get('output', image))
                else:
                    edited_image = result
                
                # Ensure it's a PIL Image
                if not isinstance(edited_image, Image.Image):
                    edited_image = image.copy()  # Fallback to original
            except Exception as e:
                print(f"Error processing with model: {e}")
                # Fallback to mock mode
                edited_image = image.copy()
        else:
            # Mock mode - just copy the image
            edited_image = image.copy()
        
        # Save edited image
        os.makedirs("results", exist_ok=True)
        result_image_id = str(uuid.uuid4())
        result_path = f"results/{result_image_id}.png"
        edited_image.save(result_path)
        
        # Store task
        tasks[task_id] = {
            "type": "edit_task",
            "image_id": image_id,
            "prompt": prompt,
            "result_image_id": result_image_id,
            "result_path": result_path,
            "status": "completed",
            "created_at": datetime.now().isoformat()
        }
        
        return EditResponse(
            task_id=task_id,
            status="completed",
            message="Image edited successfully",
            timestamp=datetime.now().isoformat()
        )
    except Exception as e:
        # Store failed task
        tasks[task_id] = {
            "type": "edit_task",
            "image_id": image_id,
            "prompt": prompt,
            "status": "failed",
            "error": str(e),
            "created_at": datetime.now().isoformat()
        }
        raise HTTPException(status_code=500, detail=f"Error editing image: {str(e)}")

@app.get("/result/{task_id}", response_model=ResultResponse)
async def get_result(task_id: str):
    """
    Get the result of an image editing task
    
    Parameters:
        task_id: ID of the editing task
    
    Returns:
        Result information including image URL
    """
    if task_id not in tasks or tasks[task_id]["type"] != "edit_task":
        raise HTTPException(status_code=404, detail="Task not found")
    
    task = tasks[task_id]
    
    if task["status"] == "failed":
        return ResultResponse(
            task_id=task_id,
            status="failed",
            error=task.get("error", "Unknown error"),
            timestamp=task["created_at"]
        )
    
    if task["status"] == "completed":
        result_image_id = task.get("result_image_id")
        return ResultResponse(
            task_id=task_id,
            status="completed",
            result_image_id=result_image_id,
            result_image_url=f"/result/image/{result_image_id}",
            timestamp=task["created_at"]
        )
    
    return ResultResponse(
        task_id=task_id,
        status="processing",
        timestamp=task["created_at"]
    )

@app.get("/result/image/{result_image_id}")
async def get_result_image(result_image_id: str):
    """
    Get the edited image file
    
    Parameters:
        result_image_id: ID of the result image
    
    Returns:
        Image file
    """
    # Find task with this result_image_id
    task = None
    for t in tasks.values():
        if t.get("type") == "edit_task" and t.get("result_image_id") == result_image_id:
            task = t
            break
    
    if not task or "result_path" not in task:
        raise HTTPException(status_code=404, detail="Result image not found")
    
    if not os.path.exists(task["result_path"]):
        raise HTTPException(status_code=404, detail="Image file not found")
    
    return FileResponse(
        task["result_path"],
        media_type="image/png",
        filename=f"edited_{result_image_id}.png"
    )

@app.get("/result/image/{result_image_id}/base64")
async def get_result_image_base64(result_image_id: str):
    """
    Get the edited image as base64 encoded string
    
    Parameters:
        result_image_id: ID of the result image
    
    Returns:
        JSON with base64 encoded image
    """
    # Find task with this result_image_id
    task = None
    for t in tasks.values():
        if t.get("type") == "edit_task" and t.get("result_image_id") == result_image_id:
            task = t
            break
    
    if not task or "result_path" not in task:
        raise HTTPException(status_code=404, detail="Result image not found")
    
    if not os.path.exists(task["result_path"]):
        raise HTTPException(status_code=404, detail="Image file not found")
    
    # Read and encode image
    with open(task["result_path"], "rb") as f:
        image_data = f.read()
        base64_data = base64.b64encode(image_data).decode("utf-8")
    
    return {
        "result_image_id": result_image_id,
        "image_base64": base64_data,
        "format": "png"
    }

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)