Upload 3 files
Browse files- Dockerfile +24 -0
- app.py +142 -0
- requirements.txt +5 -0
Dockerfile
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
|
| 5 |
+
# System dependencies
|
| 6 |
+
RUN apt-get update && apt-get install -y \
|
| 7 |
+
build-essential \
|
| 8 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 9 |
+
|
| 10 |
+
# Python dependencies
|
| 11 |
+
COPY requirements.txt .
|
| 12 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 13 |
+
|
| 14 |
+
# Copy model file (487 MB)
|
| 15 |
+
COPY best_codebert_model.pt .
|
| 16 |
+
|
| 17 |
+
# Copy application
|
| 18 |
+
COPY app.py .
|
| 19 |
+
|
| 20 |
+
# Expose port
|
| 21 |
+
EXPOSE 7860
|
| 22 |
+
|
| 23 |
+
# Run the application
|
| 24 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py - CORRECTED VERSION
|
| 2 |
+
from fastapi import FastAPI, HTTPException
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import RobertaTokenizer, RobertaModel
|
| 6 |
+
import uvicorn
|
| 7 |
+
from contextlib import asynccontextmanager
|
| 8 |
+
|
| 9 |
+
# Global variables
|
| 10 |
+
model = None
|
| 11 |
+
tokenizer = None
|
| 12 |
+
device = None
|
| 13 |
+
|
| 14 |
+
# THIS MUST MATCH YOUR TRAINING CODE EXACTLY
|
| 15 |
+
class CodeBERTClassifier(torch.nn.Module):
|
| 16 |
+
def __init__(self, num_labels=4, dropout=0.3, hidden_size=256):
|
| 17 |
+
super(CodeBERTClassifier, self).__init__()
|
| 18 |
+
|
| 19 |
+
# Load pre-trained CodeBERT
|
| 20 |
+
self.codebert = RobertaModel.from_pretrained('microsoft/codebert-base')
|
| 21 |
+
|
| 22 |
+
# Dropout
|
| 23 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 24 |
+
|
| 25 |
+
# Multi-layer feedforward network - MUST MATCH TRAINING
|
| 26 |
+
self.classifier = torch.nn.Sequential(
|
| 27 |
+
torch.nn.Linear(768, hidden_size), # 768 -> 256
|
| 28 |
+
torch.nn.ReLU(),
|
| 29 |
+
torch.nn.Dropout(dropout),
|
| 30 |
+
torch.nn.Linear(hidden_size, hidden_size // 2), # 256 -> 128
|
| 31 |
+
torch.nn.ReLU(),
|
| 32 |
+
torch.nn.Dropout(dropout),
|
| 33 |
+
torch.nn.Linear(hidden_size // 2, num_labels) # 128 -> 4
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
def forward(self, input_ids, attention_mask):
|
| 37 |
+
# Get CodeBERT embeddings
|
| 38 |
+
outputs = self.codebert(
|
| 39 |
+
input_ids=input_ids,
|
| 40 |
+
attention_mask=attention_mask
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
# CRITICAL: Use [CLS] token from last_hidden_state (matching training)
|
| 44 |
+
pooled_output = outputs.last_hidden_state[:, 0, :]
|
| 45 |
+
|
| 46 |
+
# Apply dropout
|
| 47 |
+
pooled_output = self.dropout(pooled_output)
|
| 48 |
+
|
| 49 |
+
# Classification
|
| 50 |
+
logits = self.classifier(pooled_output)
|
| 51 |
+
|
| 52 |
+
return logits
|
| 53 |
+
|
| 54 |
+
# Use lifespan instead of deprecated on_event
|
| 55 |
+
@asynccontextmanager
|
| 56 |
+
async def lifespan(app: FastAPI):
|
| 57 |
+
# Startup
|
| 58 |
+
global model, tokenizer, device
|
| 59 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 60 |
+
|
| 61 |
+
# Load your trained model with EXACT same architecture
|
| 62 |
+
model = CodeBERTClassifier(num_labels=4, dropout=0.3, hidden_size=256)
|
| 63 |
+
model.load_state_dict(torch.load('best_codebert_model.pt', map_location=device))
|
| 64 |
+
model.to(device)
|
| 65 |
+
model.eval()
|
| 66 |
+
|
| 67 |
+
tokenizer = RobertaTokenizer.from_pretrained('microsoft/codebert-base')
|
| 68 |
+
print(f"Model loaded successfully on {device}")
|
| 69 |
+
|
| 70 |
+
yield
|
| 71 |
+
|
| 72 |
+
# Shutdown
|
| 73 |
+
print("Shutting down...")
|
| 74 |
+
|
| 75 |
+
app = FastAPI(title="Vulnerability Detection API", lifespan=lifespan)
|
| 76 |
+
|
| 77 |
+
class CodeRequest(BaseModel):
|
| 78 |
+
code: str
|
| 79 |
+
max_length: int = 512
|
| 80 |
+
|
| 81 |
+
class VulnerabilityResponse(BaseModel):
|
| 82 |
+
vulnerability_type: str
|
| 83 |
+
confidence: float
|
| 84 |
+
is_vulnerable: bool
|
| 85 |
+
label: str
|
| 86 |
+
|
| 87 |
+
@app.post("/detect", response_model=VulnerabilityResponse)
|
| 88 |
+
async def detect_vulnerability(request: CodeRequest):
|
| 89 |
+
try:
|
| 90 |
+
# Tokenize
|
| 91 |
+
encoding = tokenizer(
|
| 92 |
+
request.code,
|
| 93 |
+
padding='max_length',
|
| 94 |
+
truncation=True,
|
| 95 |
+
max_length=request.max_length,
|
| 96 |
+
return_tensors='pt'
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
input_ids = encoding['input_ids'].to(device)
|
| 100 |
+
attention_mask = encoding['attention_mask'].to(device)
|
| 101 |
+
|
| 102 |
+
# Predict
|
| 103 |
+
with torch.no_grad():
|
| 104 |
+
logits = model(input_ids, attention_mask)
|
| 105 |
+
probs = torch.softmax(logits, dim=1)
|
| 106 |
+
confidence, predicted = torch.max(probs, 1)
|
| 107 |
+
|
| 108 |
+
# Label mapping - VERIFY THIS MATCHES YOUR TRAINING
|
| 109 |
+
label_map = {0: 's0', 1: 'v0', 2: 's1', 3: 'v1'}
|
| 110 |
+
vuln_type_map = {
|
| 111 |
+
's0': 'SQL Injection',
|
| 112 |
+
'v0': 'Certificate Validation',
|
| 113 |
+
's1': 'SQL Injection',
|
| 114 |
+
'v1': 'Certificate Validation'
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
label = label_map[predicted.item()]
|
| 118 |
+
is_vulnerable = label in ['s0', 'v0']
|
| 119 |
+
|
| 120 |
+
return VulnerabilityResponse(
|
| 121 |
+
vulnerability_type=vuln_type_map[label],
|
| 122 |
+
confidence=float(confidence.item()),
|
| 123 |
+
is_vulnerable=is_vulnerable,
|
| 124 |
+
label=label
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
except Exception as e:
|
| 128 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 129 |
+
|
| 130 |
+
@app.get("/health")
|
| 131 |
+
async def health_check():
|
| 132 |
+
return {"status": "healthy", "model_loaded": model is not None}
|
| 133 |
+
|
| 134 |
+
@app.get("/")
|
| 135 |
+
async def root():
|
| 136 |
+
return {
|
| 137 |
+
"message": "Vulnerability Detection API",
|
| 138 |
+
"endpoints": ["/detect", "/health", "/docs"]
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
if __name__ == "__main__":
|
| 142 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi==0.104.1
|
| 2 |
+
uvicorn[standard]==0.24.0
|
| 3 |
+
torch==2.1.0
|
| 4 |
+
transformers==4.35.0
|
| 5 |
+
pydantic==2.5.0
|