File size: 2,039 Bytes
3cf55cf
3c39fe2
 
 
 
3cf55cf
 
 
 
3c39fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
title: CodeBERT Vulnerability Detection
emoji: πŸ”’
colorFrom: red
colorTo: pink
sdk: docker
pinned: false
---

# CodeBERT Vulnerability Detection API

FastAPI-based code vulnerability detection using CodeBERT model trained for identifying SQL Injection and Certificate Validation vulnerabilities.

## πŸš€ API Endpoints

- **GET /** - API information
- **GET /health** - Health check status
- **GET /docs** - Interactive API documentation (Swagger UI)
- **POST /detect** - Detect vulnerabilities in code

## πŸ“ Example Usage

### Python
```python
import requests

url = "https://your-username-codebert-vulnerability-api.hf.space/detect"

response = requests.post(url, json={
    "code": """
    String query = "SELECT * FROM users WHERE id = '" + userId + "'";
    Statement stmt = connection.createStatement();
    ResultSet rs = stmt.executeQuery(query);
    """,
    "max_length": 512
})

result = response.json()
print(f"Vulnerable: {result['is_vulnerable']}")
print(f"Type: {result['vulnerability_type']}")
print(f"Confidence: {result['confidence']:.2%}")
```

### cURL
```bash
curl -X POST "https://your-username-codebert-vulnerability-api.hf.space/detect" \
  -H "Content-Type: application/json" \
  -d '{
    "code": "SELECT * FROM users WHERE id = " + user_input,
    "max_length": 512
  }'
```

## πŸ” Response Format

```json
{
  "vulnerability_type": "SQL Injection",
  "confidence": 0.95,
  "is_vulnerable": true,
  "label": "s0"
}
```

## 🏷️ Vulnerability Labels

- **s0** / **s1** - SQL Injection vulnerabilities
- **v0** / **v1** - Certificate Validation vulnerabilities

## 🧠 Model Details

- **Base Model:** microsoft/codebert-base
- **Architecture:** RoBERTa with custom classification head
- **Model Size:** 487 MB
- **Task:** Binary classification for vulnerability detection
- **Categories:** SQL Injection, Certificate Validation

## ⚑ Performance

The model uses CPU inference on Hugging Face Spaces free tier. For faster inference, consider upgrading to GPU hardware.

## πŸ“„ License

Apache 2.0