Upload 2 files
Browse files- sentiement_analysis.ipynb +0 -0
- sentiement_analysis.py +69 -0
sentiement_analysis.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
sentiement_analysis.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""sentiement_analysis.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1uCHkA4O7IFjR173CabfByPvjfbiz6wY7
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
!pip install diffusers transformers torch numpy scipy gradio datasets
|
| 11 |
+
|
| 12 |
+
!pip3 install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio===0.9.1 -f https://download.pytorch.org/whl/torch_stable.html
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
|
| 16 |
+
import numpy as np
|
| 17 |
+
from scipy.special import softmax
|
| 18 |
+
import gradio as gr
|
| 19 |
+
torch.cuda.is_available()
|
| 20 |
+
|
| 21 |
+
model_path = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
| 22 |
+
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 24 |
+
config = AutoConfig.from_pretrained(model_path)
|
| 25 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
| 26 |
+
|
| 27 |
+
def sentiment_analysis(text):
|
| 28 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
| 29 |
+
output = model(**encoded_input)
|
| 30 |
+
scores_ = output[0][0].detach().numpy()
|
| 31 |
+
scores_ = softmax(scores_)
|
| 32 |
+
labels = ['Negative', 'Neutral', 'Positive']
|
| 33 |
+
scores = {l: float(s) for (l, s) in zip(labels, scores_)}
|
| 34 |
+
return scores
|
| 35 |
+
|
| 36 |
+
demo = gr.Interface(
|
| 37 |
+
theme=gr.themes.Base(),
|
| 38 |
+
fn=sentiment_analysis,
|
| 39 |
+
inputs=gr.Textbox(placeholder="Write your text here..."),
|
| 40 |
+
outputs="label",
|
| 41 |
+
examples=[
|
| 42 |
+
["I'm thrilled about the job offer!"],
|
| 43 |
+
["The weather today is absolutely beautiful."],
|
| 44 |
+
["I had a fantastic time at the concert last night."],
|
| 45 |
+
["I'm so frustrated with this software glitch."],
|
| 46 |
+
["The customer service was terrible at the store."],
|
| 47 |
+
["I'm really disappointed with the quality of this product."]
|
| 48 |
+
],
|
| 49 |
+
title='Sentiment Analysis App',
|
| 50 |
+
description='This app classifies a positive, neutral, or negative sentiment.'
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
demo.launch()
|
| 54 |
+
|
| 55 |
+
!ls
|
| 56 |
+
!git add app.py
|
| 57 |
+
!git commit -m "app.py"
|
| 58 |
+
#!git push
|
| 59 |
+
#!git push
|
| 60 |
+
|
| 61 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 62 |
+
from huggingface_hub import notebook_login
|
| 63 |
+
|
| 64 |
+
notebook_login()
|
| 65 |
+
|
| 66 |
+
model.push_to_hub("Kiro0o/bert-sentiment-analysis")
|
| 67 |
+
tokenizer.push_to_hub("Kiro0o/bert-sentiment-analysis")
|
| 68 |
+
|
| 69 |
+
!git clone https://huggingface.co/spaces/Kiro0o/Sentiment
|