Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
# app.py
|
| 2 |
import os
|
| 3 |
import spacy
|
| 4 |
import stanza
|
|
@@ -13,8 +12,6 @@ import streamlit as st
|
|
| 13 |
import io
|
| 14 |
from newspaper import Article
|
| 15 |
import concurrent.futures
|
| 16 |
-
import json
|
| 17 |
-
import tempfile
|
| 18 |
|
| 19 |
# ===============================
|
| 20 |
# 🔑 Vertex AI Setup
|
|
@@ -22,6 +19,9 @@ import tempfile
|
|
| 22 |
import vertexai
|
| 23 |
from vertexai.preview.generative_models import GenerativeModel
|
| 24 |
|
|
|
|
|
|
|
|
|
|
| 25 |
# Ensure GCP credentials exist
|
| 26 |
if "GCP_SERVICE_ACCOUNT_JSON" not in os.environ:
|
| 27 |
raise RuntimeError("❌ GCP_SERVICE_ACCOUNT_JSON secret not found in Hugging Face Space")
|
|
@@ -119,19 +119,14 @@ def load_pipelines(language_code):
|
|
| 119 |
return emotion_pipeline, sentiment_pipeline
|
| 120 |
|
| 121 |
# ===============================
|
| 122 |
-
# DOCX Reader
|
| 123 |
# ===============================
|
| 124 |
def read_and_split_articles(file_path):
|
| 125 |
doc = docx.Document(file_path)
|
| 126 |
paragraphs = []
|
| 127 |
for para in doc.paragraphs:
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
continue
|
| 131 |
-
|
| 132 |
-
# If this paragraph contains bold run(s), keep it as its own paragraph (likely a subhead)
|
| 133 |
-
is_bold = any([r.bold for r in para.runs]) if para.runs else False
|
| 134 |
-
paragraphs.append(text if not is_bold else text)
|
| 135 |
|
| 136 |
headline = paragraphs[0] if paragraphs else ""
|
| 137 |
body_paragraphs = paragraphs[1:] if len(paragraphs) > 1 else []
|
|
@@ -139,24 +134,18 @@ def read_and_split_articles(file_path):
|
|
| 139 |
return headline, body_paragraphs
|
| 140 |
|
| 141 |
# ===============================
|
| 142 |
-
#
|
| 143 |
# ===============================
|
| 144 |
def read_article_from_url(url):
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
# try to download & parse
|
| 150 |
-
try:
|
| 151 |
-
article = Article(url)
|
| 152 |
-
article.download()
|
| 153 |
-
article.parse()
|
| 154 |
-
except Exception as e:
|
| 155 |
-
st.warning(f"⚠️ Could not download article: {e}")
|
| 156 |
-
return "", []
|
| 157 |
headline = article.title.strip() if article.title else ""
|
| 158 |
text_body = article.text.strip() if article.text else ""
|
|
|
|
| 159 |
body_paragraphs = [p.strip() for p in text_body.split("\n") if p.strip()]
|
|
|
|
| 160 |
return headline, body_paragraphs
|
| 161 |
|
| 162 |
# ===============================
|
|
@@ -164,19 +153,20 @@ def read_article_from_url(url):
|
|
| 164 |
# ===============================
|
| 165 |
def filter_neutral(emotion_results, neutral_threshold=0.75):
|
| 166 |
sorted_results = sorted(emotion_results, key=lambda x: x["score"], reverse=True)
|
|
|
|
| 167 |
scores = {}
|
| 168 |
for r in sorted_results:
|
| 169 |
scores[r["label"]] = round(r["score"], 3)
|
|
|
|
| 170 |
if "neutral" in scores and scores["neutral"] > neutral_threshold:
|
| 171 |
scores.pop("neutral")
|
|
|
|
| 172 |
return scores
|
| 173 |
|
| 174 |
# ===============================
|
| 175 |
# Split Sentences
|
| 176 |
# ===============================
|
| 177 |
def split_sentences(text, lang):
|
| 178 |
-
if not text:
|
| 179 |
-
return []
|
| 180 |
if lang == "hi":
|
| 181 |
sentences = re.split(r"।", text)
|
| 182 |
return [s.strip() for s in sentences if s.strip()]
|
|
@@ -216,203 +206,82 @@ def get_pos_tags(sentence, lang):
|
|
| 216 |
def normalize_scores(scores: dict):
|
| 217 |
if not scores:
|
| 218 |
return scores
|
|
|
|
| 219 |
max_val = max(scores.values())
|
| 220 |
if max_val == 0:
|
| 221 |
return scores
|
|
|
|
| 222 |
normalized = {}
|
| 223 |
for k, v in scores.items():
|
| 224 |
normalized[k] = round(v / max_val, 3)
|
|
|
|
| 225 |
return normalized
|
| 226 |
|
| 227 |
# ===============================
|
| 228 |
-
#
|
| 229 |
-
# ===============================
|
| 230 |
-
COMMON_STOPWORDS = set([
|
| 231 |
-
"the","a","an","and","or","in","on","to","of","for","is","it","that","this","with","its","as",
|
| 232 |
-
"are","be","was","were","by","from","at","have","has","had","but","not","which","who","what",
|
| 233 |
-
"when","where","why","how","will","can","should","our","we","you","your","I","they","their","his","her"
|
| 234 |
-
])
|
| 235 |
-
|
| 236 |
-
def extract_keywords(text, top_n=6):
|
| 237 |
-
# simple heuristic: words length > 3, not stopwords, prefer words appearing earlier & freq > 1
|
| 238 |
-
if not text:
|
| 239 |
-
return []
|
| 240 |
-
tokens = re.findall(r"\w+", text.lower())
|
| 241 |
-
tokens = [t for t in tokens if t not in COMMON_STOPWORDS and len(t) > 3]
|
| 242 |
-
freq = Counter(tokens)
|
| 243 |
-
if not freq:
|
| 244 |
-
return []
|
| 245 |
-
# prefer words that appear in first 80 chars (title/head) or start of article
|
| 246 |
-
head_tokens = set(re.findall(r"\w+", text[:200].lower()))
|
| 247 |
-
scored = []
|
| 248 |
-
for word, count in freq.items():
|
| 249 |
-
score = count
|
| 250 |
-
if word in head_tokens:
|
| 251 |
-
score += 1.25
|
| 252 |
-
scored.append((word, score))
|
| 253 |
-
scored.sort(key=lambda x: x[1], reverse=True)
|
| 254 |
-
keywords = [w for w,_ in scored[:top_n]]
|
| 255 |
-
return keywords
|
| 256 |
-
|
| 257 |
-
def shorten_headline_variants(headline):
|
| 258 |
-
# provide 1-3 short headline ideas (heuristic)
|
| 259 |
-
words = headline.split()
|
| 260 |
-
variants = []
|
| 261 |
-
# variant 1: take first 6-8 words
|
| 262 |
-
variants.append(" ".join(words[:8]) + ("..." if len(words) > 8 else ""))
|
| 263 |
-
# variant 2: main noun + core keyword (if any)
|
| 264 |
-
kws = extract_keywords(headline, top_n=3)
|
| 265 |
-
if kws:
|
| 266 |
-
variants.append(f"{kws[0].capitalize()}: {words[0]} {' '.join(words[1:4])}")
|
| 267 |
-
# unique variant fallback: remove stopwords from headline
|
| 268 |
-
variants.append(" ".join([w for w in words if w.lower() not in COMMON_STOPWORDS])[:70])
|
| 269 |
-
# dedupe & cleanup
|
| 270 |
-
clean = []
|
| 271 |
-
for v in variants:
|
| 272 |
-
v = v.strip()
|
| 273 |
-
if v and v not in clean:
|
| 274 |
-
clean.append(v)
|
| 275 |
-
return clean[:3]
|
| 276 |
-
|
| 277 |
-
# ===============================
|
| 278 |
-
# Compute SEO suggestions (single place; lightweight heuristics)
|
| 279 |
-
# ===============================
|
| 280 |
-
def compute_seo_suggestions_enhanced(headline, paragraphs, top_n_keywords=5):
|
| 281 |
-
"""
|
| 282 |
-
Returns small dict:
|
| 283 |
-
{
|
| 284 |
-
"keywords": [...],
|
| 285 |
-
"keyword_density": {...},
|
| 286 |
-
"suggestions": [...],
|
| 287 |
-
"headline_suggestions": [...]
|
| 288 |
-
}
|
| 289 |
-
Show main SEO block only once (headline area).
|
| 290 |
-
"""
|
| 291 |
-
text = (headline or "") + " " + " ".join(paragraphs or [])
|
| 292 |
-
tokens = re.findall(r"\w+", text.lower())
|
| 293 |
-
tokens = [t for t in tokens if t not in COMMON_STOPWORDS and len(t) > 3]
|
| 294 |
-
freq = Counter(tokens)
|
| 295 |
-
total = sum(freq.values()) or 1
|
| 296 |
-
# pick top keywords but filter random garbage by requiring either freq>1 or appearing in headline
|
| 297 |
-
top = []
|
| 298 |
-
for w, c in freq.most_common(30):
|
| 299 |
-
if c > 1 or (headline and w in headline.lower()):
|
| 300 |
-
top.append((w, c))
|
| 301 |
-
if len(top) >= top_n_keywords:
|
| 302 |
-
break
|
| 303 |
-
keywords = [k for k,_ in top]
|
| 304 |
-
keyword_density = {k: round(freq[k] / total, 4) for k in keywords}
|
| 305 |
-
suggestions = []
|
| 306 |
-
# headline length advice
|
| 307 |
-
if headline:
|
| 308 |
-
if len(headline) > 70:
|
| 309 |
-
suggestions.append("Headline is long (>70 chars). Consider shortening to 50–65 chars for better CTR.")
|
| 310 |
-
elif len(headline) < 30:
|
| 311 |
-
suggestions.append("Headline is short (<30 chars). Consider adding a descriptive keyword for clarity/SEO.")
|
| 312 |
-
# keyword placement
|
| 313 |
-
if keywords:
|
| 314 |
-
suggestions.append(f"Primary keywords to consider: {', '.join(keywords)}.")
|
| 315 |
-
# ensure at least one primary keyword in first 100 chars
|
| 316 |
-
head_sample = text[:100].lower()
|
| 317 |
-
if not any(k in head_sample for k in keywords[:2]):
|
| 318 |
-
suggestions.append("Consider including 1–2 primary keywords in the headline or first 100 words.")
|
| 319 |
-
# density advice (only sensible extremes)
|
| 320 |
-
for k, d in keyword_density.items():
|
| 321 |
-
if d < 0.003:
|
| 322 |
-
suggestions.append(f"Keyword '{k}' has low density ({d}). Consider using it once in the first 100 words.")
|
| 323 |
-
elif d > 0.06:
|
| 324 |
-
suggestions.append(f"Keyword '{k}' has high density ({d}). Review for possible keyword stuffing.")
|
| 325 |
-
# meta draft
|
| 326 |
-
body_tokens = [t for t in tokens]
|
| 327 |
-
meta = " ".join(body_tokens[:25])[:155].strip()
|
| 328 |
-
suggestions.append(f"Suggested meta (draft): {meta}...")
|
| 329 |
-
# headline ideas
|
| 330 |
-
headline_suggestions = shorten_headline_variants(headline) if headline else []
|
| 331 |
-
return {"keywords": keywords, "keyword_density": keyword_density, "suggestions": suggestions, "headline_suggestions": headline_suggestions}
|
| 332 |
-
|
| 333 |
-
# ===============================
|
| 334 |
-
# Improved Paragraph Cleaner
|
| 335 |
# ===============================
|
| 336 |
def clean_paragraphs(paragraphs):
|
| 337 |
-
"""
|
| 338 |
-
- Merge bullets and numbered lists with previous paragraphs.
|
| 339 |
-
- Remove promotional or repetitive boilerplate.
|
| 340 |
-
- Detect and merge short fragments into previous paragraph.
|
| 341 |
-
"""
|
| 342 |
cleaned = []
|
| 343 |
-
prev = None
|
| 344 |
|
| 345 |
-
for
|
| 346 |
-
|
| 347 |
-
continue
|
| 348 |
-
text = raw_para.strip()
|
| 349 |
if not text:
|
| 350 |
continue
|
| 351 |
|
| 352 |
upper_text = text.upper()
|
| 353 |
|
| 354 |
-
# skip known promo patterns
|
| 355 |
if upper_text.startswith(("ALSO READ", "READ ALSO", "TRENDING", "MUST READ")):
|
| 356 |
continue
|
| 357 |
-
if "और पढ़ें" in text or "यह भी पढ़ें" in text or "पूरा पढ़ें" in text:
|
| 358 |
-
continue
|
| 359 |
-
|
| 360 |
-
# skip obvious single-word labels like "PHOTO" or "VIDEO"
|
| 361 |
-
if len(text.split()) <= 2 and text.isupper():
|
| 362 |
-
continue
|
| 363 |
-
|
| 364 |
-
# if line looks like a bullet or numbered list or very short fragment,
|
| 365 |
-
# merge with previous paragraph instead of treating as its own paragraph
|
| 366 |
-
is_bullet = bool(re.match(r"^(\-|\•|\*|\d+[\.\)]\s)", text))
|
| 367 |
-
short_fragment = len(text.split()) < 6 and not text.endswith((".", "?", "!", ":"))
|
| 368 |
|
| 369 |
-
if
|
| 370 |
-
# merge into previous paragraph with a space
|
| 371 |
-
prev = prev.rstrip() + " " + text
|
| 372 |
-
cleaned[-1] = prev
|
| 373 |
continue
|
| 374 |
|
| 375 |
-
|
| 376 |
-
if len(text.split()) < 5 and ":" in text and not text.endswith("?"):
|
| 377 |
continue
|
| 378 |
|
| 379 |
-
# otherwise treat as a normal paragraph
|
| 380 |
cleaned.append(text)
|
| 381 |
-
prev = text
|
| 382 |
|
| 383 |
return cleaned
|
| 384 |
|
| 385 |
# ===============================
|
| 386 |
-
# Gemini Insight Generation (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 387 |
# ===============================
|
| 388 |
def generate_insight(text, emotions, sentiment, level="Paragraph", emotion_pipeline=None, sentiment_pipeline=None):
|
| 389 |
-
"""
|
| 390 |
-
- Calls Gemini to propose a *snippet* rewrite (word/phrase/sentence).
|
| 391 |
-
- Humanizes Gemini prompt and asks for Original → Rewrite → Why.
|
| 392 |
-
- Re-scores Gemini's rewrite using local pipelines (emotion + sentiment).
|
| 393 |
-
- Applies guardrails based on Gemini output (NOT original).
|
| 394 |
-
- Returns gemini_emotions (top-3 dict) and final_text string for display.
|
| 395 |
-
"""
|
| 396 |
try:
|
| 397 |
-
#
|
| 398 |
prompt = f"""
|
| 399 |
-
You are a seasoned human editor
|
| 400 |
-
|
| 401 |
Text to review:
|
| 402 |
{text}
|
| 403 |
-
|
| 404 |
Task:
|
| 405 |
-
- Identify the *specific phrase or sentence* that can be improved
|
| 406 |
-
-
|
| 407 |
-
Original →
|
| 408 |
-
Rewrite →
|
| 409 |
-
Why →
|
| 410 |
-
|
| 411 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 412 |
No rewrite needed. The {level.lower()} reads naturally and clearly.
|
| 413 |
"""
|
|
|
|
|
|
|
| 414 |
response_text = None
|
| 415 |
-
# Try Pro first, then Flash fallback
|
| 416 |
for model_id, timeout in [
|
| 417 |
("publishers/google/models/gemini-2.5-pro", 40),
|
| 418 |
("publishers/google/models/gemini-2.5-flash", 25),
|
|
@@ -435,60 +304,46 @@ No rewrite needed. The {level.lower()} reads naturally and clearly.
|
|
| 435 |
if not response_text:
|
| 436 |
return {}, f"⚠️ No insight generated."
|
| 437 |
|
| 438 |
-
# If Gemini
|
| 439 |
if response_text.startswith("No rewrite needed"):
|
| 440 |
-
|
| 441 |
-
return {}, f"✅ No rewrite needed. The {level.lower()} reads naturally and clearly."
|
| 442 |
|
| 443 |
-
#
|
| 444 |
-
gemini_emotions = {}
|
| 445 |
-
gemini_sentiment = {}
|
| 446 |
if emotion_pipeline is not None and sentiment_pipeline is not None:
|
| 447 |
context_for_scoring = f"Original: {text}\nRewrite: {response_text}"
|
|
|
|
| 448 |
emo_res_new = emotion_pipeline(context_for_scoring[:512])[0]
|
| 449 |
gemini_emotions = filter_neutral(emo_res_new)
|
| 450 |
-
# keep top 3 emotions with scores
|
| 451 |
sorted_emotions = sorted(gemini_emotions.items(), key=lambda x: x[1], reverse=True)
|
| 452 |
-
gemini_emotions = dict(sorted_emotions[:3])
|
| 453 |
|
| 454 |
senti_res_new = sentiment_pipeline(context_for_scoring[:512])[0]
|
| 455 |
gemini_sentiment = max(senti_res_new, key=lambda x: x["score"])
|
| 456 |
|
| 457 |
-
# Guardrails on
|
| 458 |
-
# If Gemini's suggested rewrite itself is strongly negative, we skip (treat as no rewrite)
|
| 459 |
if gemini_sentiment["label"].upper() == "NEGATIVE" and gemini_sentiment["score"] >= 0.8:
|
| 460 |
-
return {}, f"✅ No rewrite needed. The {level.lower()}
|
| 461 |
|
| 462 |
negative_emotions = ["disapproval", "anger", "sadness", "fear", "disgust", "annoyance", "grief", "remorse"]
|
| 463 |
for emo, score in gemini_emotions.items():
|
| 464 |
if emo.lower() in negative_emotions and score >= 0.8:
|
| 465 |
-
return {}, f"✅ No rewrite needed. The {level.lower()}
|
| 466 |
|
| 467 |
-
# If both approval and disapproval are high in the gemini re-score, skip as ambiguous
|
| 468 |
if gemini_emotions.get("approval", 0) > 0.6 and gemini_emotions.get("disapproval", 0) > 0.6:
|
| 469 |
-
return {}, f"✅ No rewrite needed. The {level.lower()}
|
| 470 |
|
| 471 |
-
#
|
| 472 |
-
|
| 473 |
-
try:
|
| 474 |
-
seo_data = compute_seo_suggestions_enhanced(text, [text])
|
| 475 |
-
seo_tips = seo_data.get("suggestions", [])[:2]
|
| 476 |
-
except Exception:
|
| 477 |
-
seo_tips = []
|
| 478 |
|
| 479 |
-
# Format
|
| 480 |
gem_emo_text = ", ".join([f"{k}: {v}" for k, v in gemini_emotions.items()]) if gemini_emotions else "N/A"
|
| 481 |
gem_sent_text = f"{gemini_sentiment.get('label','N/A')} ({round(gemini_sentiment.get('score',0),3)})" if gemini_sentiment else "N/A"
|
| 482 |
|
| 483 |
-
seo_text = ""
|
| 484 |
-
if seo_tips:
|
| 485 |
-
seo_text = "\n\n💡 SEO Suggestions:\n- " + "\n- ".join(seo_tips)
|
| 486 |
-
|
| 487 |
final_text = (
|
| 488 |
-
f"
|
| 489 |
f"✨ Gemini Rewrite Sentiment: {gem_sent_text}\n"
|
| 490 |
f"✨ Gemini Rewrite Top Emotions: {gem_emo_text}"
|
| 491 |
-
f"{seo_text}"
|
| 492 |
)
|
| 493 |
return gemini_emotions, final_text
|
| 494 |
|
|
@@ -519,18 +374,6 @@ def analyze_article(headline, paragraphs, lang, emotion_pipeline, sentiment_pipe
|
|
| 519 |
st.write("Headline →", headline)
|
| 520 |
st.write("Emotions →", headline_emotions)
|
| 521 |
st.write("Sentiment →", headline_sentiment)
|
| 522 |
-
|
| 523 |
-
# Show SEO suggestions only once here
|
| 524 |
-
seo_data = compute_seo_suggestions_enhanced(headline, paragraphs)
|
| 525 |
-
if seo_data.get("suggestions"):
|
| 526 |
-
st.markdown("### 💡 SEO Suggestions (headline)")
|
| 527 |
-
for s in seo_data["suggestions"][:3]:
|
| 528 |
-
st.write("-", s)
|
| 529 |
-
if seo_data.get("headline_suggestions"):
|
| 530 |
-
st.markdown("### 📝 Headline ideas:")
|
| 531 |
-
for hs in seo_data["headline_suggestions"]:
|
| 532 |
-
st.write("-", hs)
|
| 533 |
-
|
| 534 |
top3_headline, headline_insight = generate_insight(
|
| 535 |
headline, headline_emotions, headline_sentiment, "Headline",
|
| 536 |
emotion_pipeline=emotion_pipeline, sentiment_pipeline=sentiment_pipeline
|
|
@@ -543,7 +386,7 @@ def analyze_article(headline, paragraphs, lang, emotion_pipeline, sentiment_pipe
|
|
| 543 |
})
|
| 544 |
|
| 545 |
# -----------------------
|
| 546 |
-
# Overall Article Analysis
|
| 547 |
# -----------------------
|
| 548 |
if paragraphs:
|
| 549 |
for p in paragraphs:
|
|
@@ -578,17 +421,9 @@ def analyze_article(headline, paragraphs, lang, emotion_pipeline, sentiment_pipe
|
|
| 578 |
})
|
| 579 |
|
| 580 |
# -----------------------
|
| 581 |
-
# Paragraph Analysis
|
| 582 |
# -----------------------
|
| 583 |
for p_idx, para in enumerate(paragraphs, start=1):
|
| 584 |
-
# subheading heuristics
|
| 585 |
-
is_subheading = (
|
| 586 |
-
para.strip().endswith("?")
|
| 587 |
-
or len(para.split()) <= 8
|
| 588 |
-
or bool(re.match(r"^\d+[\.\)]", para.strip()))
|
| 589 |
-
or (sum(1 for w in para.split() if w.isupper()) >= 2 and len(para.split()) <= 10)
|
| 590 |
-
)
|
| 591 |
-
|
| 592 |
para_counter, para_sentiments = Counter(), []
|
| 593 |
sentences = split_sentences(para, lang[:2])
|
| 594 |
for sentence in sentences:
|
|
@@ -603,29 +438,17 @@ def analyze_article(headline, paragraphs, lang, emotion_pipeline, sentiment_pipe
|
|
| 603 |
sorted_para = sorted(para_emotions.items(), key=lambda x: x[1], reverse=True)
|
| 604 |
para_emotions = dict(sorted_para[:10])
|
| 605 |
para_sentiment = max(para_sentiments, key=lambda x: x["score"]) if para_sentiments else {}
|
| 606 |
-
|
| 607 |
-
st.subheader(f"{'🧩 Sub-heading' if is_subheading else '📑 Paragraph'} {p_idx}")
|
| 608 |
st.write(para)
|
| 609 |
st.write("Emotions →", para_emotions)
|
| 610 |
st.write("Sentiment →", para_sentiment)
|
| 611 |
-
|
| 612 |
-
# Show limited SEO only if NOT a sub-heading and only one focused tip
|
| 613 |
-
if not is_subheading:
|
| 614 |
-
try:
|
| 615 |
-
seo_data = compute_seo_suggestions_enhanced("", [para], top_n_keywords=3)
|
| 616 |
-
uniq_suggestion = seo_data["suggestions"][0] if seo_data.get("suggestions") else None
|
| 617 |
-
if uniq_suggestion:
|
| 618 |
-
st.markdown(f"💡 SEO Tip: {uniq_suggestion}")
|
| 619 |
-
except Exception:
|
| 620 |
-
pass
|
| 621 |
-
|
| 622 |
top3_para, insight = generate_insight(
|
| 623 |
-
para, para_emotions, para_sentiment, "
|
| 624 |
emotion_pipeline=emotion_pipeline, sentiment_pipeline=sentiment_pipeline
|
| 625 |
)
|
| 626 |
st.write(insight)
|
| 627 |
export_rows.append({
|
| 628 |
-
"Type": "
|
| 629 |
"Emotions": para_emotions,"Sentiment": para_sentiment,
|
| 630 |
"Top3": dict(top3_para),"Insight": insight
|
| 631 |
})
|
|
@@ -644,7 +467,6 @@ text_input = st.text_area("Or paste text here")
|
|
| 644 |
if st.button("🔍 Analyze"):
|
| 645 |
with st.spinner("Running analysis... ⏳"):
|
| 646 |
if uploaded_file:
|
| 647 |
-
# streamlit FileUploader returns a BytesIO-like object; docx.Document accepts file-like
|
| 648 |
headline, paragraphs = read_and_split_articles(uploaded_file)
|
| 649 |
elif url_input.strip():
|
| 650 |
headline, paragraphs = read_article_from_url(url_input)
|
|
@@ -655,7 +477,6 @@ if st.button("🔍 Analyze"):
|
|
| 655 |
else:
|
| 656 |
st.warning("Please provide text input.")
|
| 657 |
st.stop()
|
| 658 |
-
|
| 659 |
detected_lang = detect((headline + " " + " ".join(paragraphs))[:200]) if (headline or paragraphs) else "en"
|
| 660 |
emotion_pipeline, sentiment_pipeline = load_pipelines(detected_lang)
|
| 661 |
export_rows = analyze_article(headline, paragraphs, detected_lang, emotion_pipeline, sentiment_pipeline)
|
|
@@ -666,3 +487,4 @@ if st.button("🔍 Analyze"):
|
|
| 666 |
excel_buffer = io.BytesIO()
|
| 667 |
df_export.to_excel(excel_buffer, index=False, engine="xlsxwriter")
|
| 668 |
st.download_button("⬇️ Download Excel", excel_buffer, "analysis_results.xlsx", "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", use_container_width=True)
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import spacy
|
| 3 |
import stanza
|
|
|
|
| 12 |
import io
|
| 13 |
from newspaper import Article
|
| 14 |
import concurrent.futures
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# ===============================
|
| 17 |
# 🔑 Vertex AI Setup
|
|
|
|
| 19 |
import vertexai
|
| 20 |
from vertexai.preview.generative_models import GenerativeModel
|
| 21 |
|
| 22 |
+
import json
|
| 23 |
+
import tempfile
|
| 24 |
+
|
| 25 |
# Ensure GCP credentials exist
|
| 26 |
if "GCP_SERVICE_ACCOUNT_JSON" not in os.environ:
|
| 27 |
raise RuntimeError("❌ GCP_SERVICE_ACCOUNT_JSON secret not found in Hugging Face Space")
|
|
|
|
| 119 |
return emotion_pipeline, sentiment_pipeline
|
| 120 |
|
| 121 |
# ===============================
|
| 122 |
+
# DOCX Reader
|
| 123 |
# ===============================
|
| 124 |
def read_and_split_articles(file_path):
|
| 125 |
doc = docx.Document(file_path)
|
| 126 |
paragraphs = []
|
| 127 |
for para in doc.paragraphs:
|
| 128 |
+
if para.text.strip():
|
| 129 |
+
paragraphs.append(para.text.strip())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
headline = paragraphs[0] if paragraphs else ""
|
| 132 |
body_paragraphs = paragraphs[1:] if len(paragraphs) > 1 else []
|
|
|
|
| 134 |
return headline, body_paragraphs
|
| 135 |
|
| 136 |
# ===============================
|
| 137 |
+
# URL Reader
|
| 138 |
# ===============================
|
| 139 |
def read_article_from_url(url):
|
| 140 |
+
article = Article(url)
|
| 141 |
+
article.download()
|
| 142 |
+
article.parse()
|
| 143 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
headline = article.title.strip() if article.title else ""
|
| 145 |
text_body = article.text.strip() if article.text else ""
|
| 146 |
+
|
| 147 |
body_paragraphs = [p.strip() for p in text_body.split("\n") if p.strip()]
|
| 148 |
+
|
| 149 |
return headline, body_paragraphs
|
| 150 |
|
| 151 |
# ===============================
|
|
|
|
| 153 |
# ===============================
|
| 154 |
def filter_neutral(emotion_results, neutral_threshold=0.75):
|
| 155 |
sorted_results = sorted(emotion_results, key=lambda x: x["score"], reverse=True)
|
| 156 |
+
|
| 157 |
scores = {}
|
| 158 |
for r in sorted_results:
|
| 159 |
scores[r["label"]] = round(r["score"], 3)
|
| 160 |
+
|
| 161 |
if "neutral" in scores and scores["neutral"] > neutral_threshold:
|
| 162 |
scores.pop("neutral")
|
| 163 |
+
|
| 164 |
return scores
|
| 165 |
|
| 166 |
# ===============================
|
| 167 |
# Split Sentences
|
| 168 |
# ===============================
|
| 169 |
def split_sentences(text, lang):
|
|
|
|
|
|
|
| 170 |
if lang == "hi":
|
| 171 |
sentences = re.split(r"।", text)
|
| 172 |
return [s.strip() for s in sentences if s.strip()]
|
|
|
|
| 206 |
def normalize_scores(scores: dict):
|
| 207 |
if not scores:
|
| 208 |
return scores
|
| 209 |
+
|
| 210 |
max_val = max(scores.values())
|
| 211 |
if max_val == 0:
|
| 212 |
return scores
|
| 213 |
+
|
| 214 |
normalized = {}
|
| 215 |
for k, v in scores.items():
|
| 216 |
normalized[k] = round(v / max_val, 3)
|
| 217 |
+
|
| 218 |
return normalized
|
| 219 |
|
| 220 |
# ===============================
|
| 221 |
+
# Clean Paragraphs (remove embeds/promos)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
# ===============================
|
| 223 |
def clean_paragraphs(paragraphs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
cleaned = []
|
|
|
|
| 225 |
|
| 226 |
+
for para in paragraphs:
|
| 227 |
+
text = para.strip()
|
|
|
|
|
|
|
| 228 |
if not text:
|
| 229 |
continue
|
| 230 |
|
| 231 |
upper_text = text.upper()
|
| 232 |
|
|
|
|
| 233 |
if upper_text.startswith(("ALSO READ", "READ ALSO", "TRENDING", "MUST READ")):
|
| 234 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
+
if "और पढ़ें" in text or "यह भी पढ़ें" in text or "पूरा पढ़ें" in text:
|
|
|
|
|
|
|
|
|
|
| 237 |
continue
|
| 238 |
|
| 239 |
+
if len(text.split()) < 5 and ":" in text:
|
|
|
|
| 240 |
continue
|
| 241 |
|
|
|
|
| 242 |
cleaned.append(text)
|
|
|
|
| 243 |
|
| 244 |
return cleaned
|
| 245 |
|
| 246 |
# ===============================
|
| 247 |
+
# Gemini Insight Generation (patched with guardrails + snippet rewrites)
|
| 248 |
+
# ===============================
|
| 249 |
+
# ===============================
|
| 250 |
+
# Gemini Insight Generation (patched with guardrails + snippet rewrites + Gemini emotions/sentiment)
|
| 251 |
+
# ===============================
|
| 252 |
+
# ===============================
|
| 253 |
+
# Gemini Insight Generation (no Top 3 emotions, skip Gemini scoring if no rewrite)
|
| 254 |
+
# ===============================
|
| 255 |
+
# ===============================
|
| 256 |
+
# Gemini Insight Generation (only Gemini sentiment + top 3 emotions)
|
| 257 |
+
# ===============================
|
| 258 |
+
# ===============================
|
| 259 |
+
# Gemini Insight Generation (only Gemini sentiment + top 3 emotions, with context scoring)
|
| 260 |
# ===============================
|
| 261 |
def generate_insight(text, emotions, sentiment, level="Paragraph", emotion_pipeline=None, sentiment_pipeline=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
try:
|
| 263 |
+
# Always ask Gemini
|
| 264 |
prompt = f"""
|
| 265 |
+
You are a seasoned human editor with a natural, conversational tone — not robotic or formulaic.
|
|
|
|
| 266 |
Text to review:
|
| 267 |
{text}
|
|
|
|
| 268 |
Task:
|
| 269 |
+
- Identify the *specific phrase or sentence* that can be improved for clarity, tone, or impact.
|
| 270 |
+
- Present it as:
|
| 271 |
+
Original → [the exact part]
|
| 272 |
+
Rewrite → [a natural, human-sounding rewrite — avoid over-polishing or AI tone]
|
| 273 |
+
Why → [briefly explain the edit as if giving human feedback — e.g., “This reads more fluidly” or “Helps it sound more direct.”]
|
| 274 |
+
Guidelines:
|
| 275 |
+
- Use everyday phrasing and mild imperfections that feel authentic.
|
| 276 |
+
- Avoid mechanical transitions like “Overall,” “In summary,” or “This small change.”
|
| 277 |
+
- Vary sentence rhythm and tone to mimic human writing.
|
| 278 |
+
- Keep rewrites short and organic, not overly polished.
|
| 279 |
+
- If the text is already fine, say exactly:
|
| 280 |
No rewrite needed. The {level.lower()} reads naturally and clearly.
|
| 281 |
"""
|
| 282 |
+
|
| 283 |
+
|
| 284 |
response_text = None
|
|
|
|
| 285 |
for model_id, timeout in [
|
| 286 |
("publishers/google/models/gemini-2.5-pro", 40),
|
| 287 |
("publishers/google/models/gemini-2.5-flash", 25),
|
|
|
|
| 304 |
if not response_text:
|
| 305 |
return {}, f"⚠️ No insight generated."
|
| 306 |
|
| 307 |
+
# If Gemini says no rewrite → just show that (no extra scoring)
|
| 308 |
if response_text.startswith("No rewrite needed"):
|
| 309 |
+
return {}, f"✅ {response_text}"
|
|
|
|
| 310 |
|
| 311 |
+
# Otherwise, re-score Gemini rewrite using context (Original + Rewrite)
|
| 312 |
+
gemini_emotions, gemini_sentiment = {}, {}
|
|
|
|
| 313 |
if emotion_pipeline is not None and sentiment_pipeline is not None:
|
| 314 |
context_for_scoring = f"Original: {text}\nRewrite: {response_text}"
|
| 315 |
+
|
| 316 |
emo_res_new = emotion_pipeline(context_for_scoring[:512])[0]
|
| 317 |
gemini_emotions = filter_neutral(emo_res_new)
|
|
|
|
| 318 |
sorted_emotions = sorted(gemini_emotions.items(), key=lambda x: x[1], reverse=True)
|
| 319 |
+
gemini_emotions = dict(sorted_emotions[:3]) # keep top 3
|
| 320 |
|
| 321 |
senti_res_new = sentiment_pipeline(context_for_scoring[:512])[0]
|
| 322 |
gemini_sentiment = max(senti_res_new, key=lambda x: x["score"])
|
| 323 |
|
| 324 |
+
# Guardrails on Gemini output
|
|
|
|
| 325 |
if gemini_sentiment["label"].upper() == "NEGATIVE" and gemini_sentiment["score"] >= 0.8:
|
| 326 |
+
return {}, f"✅ No rewrite needed. The {level.lower()} is clear and well written."
|
| 327 |
|
| 328 |
negative_emotions = ["disapproval", "anger", "sadness", "fear", "disgust", "annoyance", "grief", "remorse"]
|
| 329 |
for emo, score in gemini_emotions.items():
|
| 330 |
if emo.lower() in negative_emotions and score >= 0.8:
|
| 331 |
+
return {}, f"✅ No rewrite needed. The {level.lower()} is clear and well written."
|
| 332 |
|
|
|
|
| 333 |
if gemini_emotions.get("approval", 0) > 0.6 and gemini_emotions.get("disapproval", 0) > 0.6:
|
| 334 |
+
return {}, f"✅ No rewrite needed. The {level.lower()} is clear and well written."
|
| 335 |
|
| 336 |
+
# Badge indicator
|
| 337 |
+
badge = "✍️"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
|
| 339 |
+
# Format Gemini insight with rewrite emotions & sentiment
|
| 340 |
gem_emo_text = ", ".join([f"{k}: {v}" for k, v in gemini_emotions.items()]) if gemini_emotions else "N/A"
|
| 341 |
gem_sent_text = f"{gemini_sentiment.get('label','N/A')} ({round(gemini_sentiment.get('score',0),3)})" if gemini_sentiment else "N/A"
|
| 342 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
final_text = (
|
| 344 |
+
f"{badge} {response_text}\n\n"
|
| 345 |
f"✨ Gemini Rewrite Sentiment: {gem_sent_text}\n"
|
| 346 |
f"✨ Gemini Rewrite Top Emotions: {gem_emo_text}"
|
|
|
|
| 347 |
)
|
| 348 |
return gemini_emotions, final_text
|
| 349 |
|
|
|
|
| 374 |
st.write("Headline →", headline)
|
| 375 |
st.write("Emotions →", headline_emotions)
|
| 376 |
st.write("Sentiment →", headline_sentiment)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
top3_headline, headline_insight = generate_insight(
|
| 378 |
headline, headline_emotions, headline_sentiment, "Headline",
|
| 379 |
emotion_pipeline=emotion_pipeline, sentiment_pipeline=sentiment_pipeline
|
|
|
|
| 386 |
})
|
| 387 |
|
| 388 |
# -----------------------
|
| 389 |
+
# Overall Article Analysis
|
| 390 |
# -----------------------
|
| 391 |
if paragraphs:
|
| 392 |
for p in paragraphs:
|
|
|
|
| 421 |
})
|
| 422 |
|
| 423 |
# -----------------------
|
| 424 |
+
# Paragraph Analysis
|
| 425 |
# -----------------------
|
| 426 |
for p_idx, para in enumerate(paragraphs, start=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
para_counter, para_sentiments = Counter(), []
|
| 428 |
sentences = split_sentences(para, lang[:2])
|
| 429 |
for sentence in sentences:
|
|
|
|
| 438 |
sorted_para = sorted(para_emotions.items(), key=lambda x: x[1], reverse=True)
|
| 439 |
para_emotions = dict(sorted_para[:10])
|
| 440 |
para_sentiment = max(para_sentiments, key=lambda x: x["score"]) if para_sentiments else {}
|
| 441 |
+
st.subheader(f"📑 Paragraph {p_idx}")
|
|
|
|
| 442 |
st.write(para)
|
| 443 |
st.write("Emotions →", para_emotions)
|
| 444 |
st.write("Sentiment →", para_sentiment)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 445 |
top3_para, insight = generate_insight(
|
| 446 |
+
para, para_emotions, para_sentiment, "Paragraph",
|
| 447 |
emotion_pipeline=emotion_pipeline, sentiment_pipeline=sentiment_pipeline
|
| 448 |
)
|
| 449 |
st.write(insight)
|
| 450 |
export_rows.append({
|
| 451 |
+
"Type": "Paragraph","Text": para,
|
| 452 |
"Emotions": para_emotions,"Sentiment": para_sentiment,
|
| 453 |
"Top3": dict(top3_para),"Insight": insight
|
| 454 |
})
|
|
|
|
| 467 |
if st.button("🔍 Analyze"):
|
| 468 |
with st.spinner("Running analysis... ⏳"):
|
| 469 |
if uploaded_file:
|
|
|
|
| 470 |
headline, paragraphs = read_and_split_articles(uploaded_file)
|
| 471 |
elif url_input.strip():
|
| 472 |
headline, paragraphs = read_article_from_url(url_input)
|
|
|
|
| 477 |
else:
|
| 478 |
st.warning("Please provide text input.")
|
| 479 |
st.stop()
|
|
|
|
| 480 |
detected_lang = detect((headline + " " + " ".join(paragraphs))[:200]) if (headline or paragraphs) else "en"
|
| 481 |
emotion_pipeline, sentiment_pipeline = load_pipelines(detected_lang)
|
| 482 |
export_rows = analyze_article(headline, paragraphs, detected_lang, emotion_pipeline, sentiment_pipeline)
|
|
|
|
| 487 |
excel_buffer = io.BytesIO()
|
| 488 |
df_export.to_excel(excel_buffer, index=False, engine="xlsxwriter")
|
| 489 |
st.download_button("⬇️ Download Excel", excel_buffer, "analysis_results.xlsx", "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", use_container_width=True)
|
| 490 |
+
|