Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,78 +2,76 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
| 2 |
import streamlit as st
|
| 3 |
from huggingface_hub import login
|
| 4 |
import pandas as pd
|
|
|
|
| 5 |
|
| 6 |
# Token Secret of Hugging Face
|
| 7 |
huggingface_token = st.secrets["HUGGINGFACEHUB_API_TOKEN"]
|
| 8 |
login(huggingface_token)
|
| 9 |
|
| 10 |
-
# Cargar el modelo y el tokenizer
|
| 11 |
-
model_name = "meta-llama/Llama-3.2-1B-Instruct"
|
| 12 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 13 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 14 |
|
| 15 |
-
#
|
|
|
|
|
|
|
|
|
|
| 16 |
tokenizer.pad_token = tokenizer.eos_token
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
# Upload CSV file
|
| 22 |
-
uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"])
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
f"...\n"
|
| 55 |
-
f"N. [Least Relevant Job Title]\n"
|
| 56 |
-
f"\n"
|
| 57 |
-
f"Query: \"{query}\"\n"
|
| 58 |
-
f"Job Titles: {job_titles}\n"
|
| 59 |
-
)
|
| 60 |
|
| 61 |
-
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
#
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
#
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
)
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
st.write("Texto generado:", generated_text)
|
| 79 |
|
|
|
|
| 2 |
import streamlit as st
|
| 3 |
from huggingface_hub import login
|
| 4 |
import pandas as pd
|
| 5 |
+
from threading import Thread
|
| 6 |
|
| 7 |
# Token Secret of Hugging Face
|
| 8 |
huggingface_token = st.secrets["HUGGINGFACEHUB_API_TOKEN"]
|
| 9 |
login(huggingface_token)
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
# Cargar el modelo y el tokenizer
|
| 13 |
+
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 15 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
| 16 |
tokenizer.pad_token = tokenizer.eos_token
|
| 17 |
|
| 18 |
+
# Definir longitud m谩xima de tokens
|
| 19 |
+
MAX_INPUT_TOKEN_LENGTH = 4096
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
def generate_response(input_text, temperature=0.7, max_new_tokens=100):
|
| 22 |
+
"""Funci贸n de generaci贸n de texto con el modelo."""
|
| 23 |
+
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
| 24 |
+
input_ids = input_ids.to(model.device)
|
| 25 |
|
| 26 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
| 27 |
+
generate_kwargs = dict(
|
| 28 |
+
input_ids=input_ids,
|
| 29 |
+
streamer=streamer,
|
| 30 |
+
max_new_tokens=max_new_tokens,
|
| 31 |
+
do_sample=temperature != 0,
|
| 32 |
+
temperature=temperature,
|
| 33 |
+
eos_token_id=[tokenizer.eos_token_id]
|
| 34 |
+
)
|
| 35 |
|
| 36 |
+
# Generaci贸n de texto en un hilo separado
|
| 37 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 38 |
+
t.start()
|
| 39 |
|
| 40 |
+
outputs = []
|
| 41 |
+
for text in streamer:
|
| 42 |
+
outputs.append(text)
|
| 43 |
+
yield "".join(outputs)
|
| 44 |
|
| 45 |
+
def main():
|
| 46 |
+
st.title("Chat con Meta Llama 3.1 8B")
|
| 47 |
+
|
| 48 |
+
# Paso 1: Subir el archivo CSV
|
| 49 |
+
uploaded_file = st.file_uploader("Por favor, sube un archivo CSV para iniciar:", type=["csv"])
|
| 50 |
+
|
| 51 |
+
if uploaded_file is not None:
|
| 52 |
+
df = pd.read_csv(uploaded_file)
|
| 53 |
+
st.write("Archivo CSV cargado exitosamente:")
|
| 54 |
+
st.write(df.head()) # Mostrar las primeras filas del dataframe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
# Prompt inicial
|
| 57 |
+
initial_prompt = "dame el nombre de un animal"
|
| 58 |
+
st.write(f"Prompt inicial: {initial_prompt}")
|
| 59 |
|
| 60 |
+
# Generar la respuesta del modelo
|
| 61 |
+
if st.button("Generar respuesta"):
|
| 62 |
+
with st.spinner("Generando respuesta..."):
|
| 63 |
+
response = list(generate_response(initial_prompt))[0] # Obtener la primera respuesta completa
|
| 64 |
+
st.write(f"Respuesta del modelo: {response}")
|
| 65 |
|
| 66 |
+
# Terminar la conversaci贸n
|
| 67 |
+
st.success("La conversaci贸n ha terminado.")
|
| 68 |
+
|
| 69 |
+
# Opci贸n para reiniciar o finalizar
|
| 70 |
+
if st.button("Iniciar nueva conversaci贸n"):
|
| 71 |
+
st.experimental_rerun() # Reinicia la aplicaci贸n
|
| 72 |
+
elif st.button("Terminar"):
|
| 73 |
+
st.stop()
|
|
|
|
| 74 |
|
| 75 |
+
if __name__ == "__main__":
|
| 76 |
+
main()
|
|
|
|
| 77 |
|