Spaces:
Runtime error
Runtime error
| from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor | |
| from qwen_vl_utils import process_vision_info | |
| from smolagents import tool | |
| import torch | |
| def video_reasoner(file_path : str, query : str) -> str: | |
| """ | |
| This tool performs requested visual reasoning task on the provided video and returns the generated output. | |
| Args: | |
| file_path: Path of a local video file on which visual reasoning is to be done. | |
| query: visual reasoning that is to be done. | |
| """ | |
| try: | |
| # default: Load the model on the available device(s) | |
| model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| "Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto" | |
| ) | |
| # default processer | |
| processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct") | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "video", | |
| "video": file_path, | |
| "max_pixels": 360 * 360, | |
| "fps": 0.3, | |
| }, | |
| {"type": "text", "text": f"{query}\n\nAdditional instruction: Treat the two types of penguins as distinct species e.g. Adelie and Emperor Penguins are considered two different species of birds."}, | |
| ], | |
| } | |
| ] | |
| # Preparation for inference | |
| text = processor.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| inputs = inputs.to("cuda") | |
| # Inference: Generation of the output | |
| generated_ids = model.generate(**inputs, max_new_tokens=512) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| ) | |
| import gc | |
| # After inference | |
| del image_inputs | |
| del video_inputs | |
| del inputs | |
| del model | |
| del processor | |
| gc.collect() # Force Python garbage collection | |
| torch.cuda.empty_cache() # Clear cached memory | |
| return output_text | |
| except Exception as e: | |
| return f'error occured: {e}' | |
| def image_reasoner(file_path : str, query : str) -> str: | |
| """ | |
| This tool performs requested visual reasoning task on the provided image and returns the generated output. | |
| Args: | |
| file_path: Path of a local image file on which visual reasoning is to be done. | |
| query: visual reasoning that is to be done. | |
| """ | |
| try: | |
| # default: Load the model on the available device(s) | |
| model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| "Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto" | |
| ) | |
| # default processer | |
| processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct") | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "image", | |
| "image": file_path, | |
| }, | |
| {"type": "text", "text": f"{query}\n\nAdditional instruction: Review your answer for correctness."}, | |
| ], | |
| } | |
| ] | |
| # Preparation for inference | |
| text = processor.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| inputs = inputs.to("cuda") | |
| # Inference: Generation of the output | |
| generated_ids = model.generate(**inputs, max_new_tokens=512) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| ) | |
| import gc | |
| # After inference | |
| del image_inputs | |
| del video_inputs | |
| del inputs | |
| del model | |
| del processor | |
| gc.collect() # Force Python garbage collection | |
| torch.cuda.empty_cache() # Clear cached memory | |
| return output_text | |
| except Exception as e: | |
| return f'error occured: {e}' |