Final_Assignment_Template / Tools /visual_reasoner.py
J3's picture
Upload 6 files
b3bb0f6 verified
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
from smolagents import tool
import torch
@tool
def video_reasoner(file_path : str, query : str) -> str:
"""
This tool performs requested visual reasoning task on the provided video and returns the generated output.
Args:
file_path: Path of a local video file on which visual reasoning is to be done.
query: visual reasoning that is to be done.
"""
try:
# default: Load the model on the available device(s)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
# default processer
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": file_path,
"max_pixels": 360 * 360,
"fps": 0.3,
},
{"type": "text", "text": f"{query}\n\nAdditional instruction: Treat the two types of penguins as distinct species e.g. Adelie and Emperor Penguins are considered two different species of birds."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=512)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
import gc
# After inference
del image_inputs
del video_inputs
del inputs
del model
del processor
gc.collect() # Force Python garbage collection
torch.cuda.empty_cache() # Clear cached memory
return output_text
except Exception as e:
return f'error occured: {e}'
@tool
def image_reasoner(file_path : str, query : str) -> str:
"""
This tool performs requested visual reasoning task on the provided image and returns the generated output.
Args:
file_path: Path of a local image file on which visual reasoning is to be done.
query: visual reasoning that is to be done.
"""
try:
# default: Load the model on the available device(s)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
# default processer
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": file_path,
},
{"type": "text", "text": f"{query}\n\nAdditional instruction: Review your answer for correctness."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=512)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
import gc
# After inference
del image_inputs
del video_inputs
del inputs
del model
del processor
gc.collect() # Force Python garbage collection
torch.cuda.empty_cache() # Clear cached memory
return output_text
except Exception as e:
return f'error occured: {e}'