Spaces:
Sleeping
Sleeping
Update app.py
Browse filesChange to ZeroGPU
app.py
CHANGED
|
@@ -1,5 +1,7 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 4 |
from peft import PeftModel
|
| 5 |
|
|
@@ -12,13 +14,13 @@ ADAPTER_MODEL = "GilbertAkham/deepseek-R1-multitask-lora"
|
|
| 12 |
print("🔄 Loading base model and LoRA adapter...")
|
| 13 |
|
| 14 |
bnb_config = BitsAndBytesConfig(
|
| 15 |
-
load_in_4bit=True, #
|
| 16 |
bnb_4bit_use_double_quant=True,
|
| 17 |
bnb_4bit_quant_type="nf4",
|
| 18 |
bnb_4bit_compute_dtype=torch.float16,
|
| 19 |
)
|
| 20 |
|
| 21 |
-
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
| 22 |
if tokenizer.pad_token is None:
|
| 23 |
tokenizer.pad_token = tokenizer.eos_token
|
| 24 |
|
|
@@ -37,15 +39,14 @@ print("✅ Model and tokenizer loaded successfully!")
|
|
| 37 |
|
| 38 |
|
| 39 |
# -------------------------------------------------
|
| 40 |
-
#
|
| 41 |
# -------------------------------------------------
|
|
|
|
| 42 |
def generate_response(message, history, system_message, max_tokens, temperature, top_p):
|
| 43 |
"""
|
| 44 |
Generates text using the multitask LoRA model.
|
| 45 |
-
Supports
|
| 46 |
"""
|
| 47 |
-
|
| 48 |
-
# Construct a conversation-style prompt
|
| 49 |
prompt = f"{system_message}\n\n"
|
| 50 |
for turn in history:
|
| 51 |
prompt += f"User: {turn['content']}\nAssistant: {turn.get('response', '')}\n"
|
|
@@ -65,7 +66,6 @@ def generate_response(message, history, system_message, max_tokens, temperature,
|
|
| 65 |
)
|
| 66 |
|
| 67 |
text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 68 |
-
# Extract only the Assistant’s answer
|
| 69 |
answer = text.split("Assistant:")[-1].strip()
|
| 70 |
|
| 71 |
return answer
|
|
@@ -104,7 +104,7 @@ with gr.Blocks(title="Gilbert Multitask Reasoning AI") as demo:
|
|
| 104 |
- **Base:** `deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B`
|
| 105 |
- **Capabilities:**
|
| 106 |
🧩 Reasoning, 🗣️ Chat, 📧 Email writing, 📚 Summarization, ✍️ Story continuation, 🧾 Report generation
|
| 107 |
-
- **
|
| 108 |
"""
|
| 109 |
)
|
| 110 |
chatbot.render()
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
+
import spaces # 👈 Required for ZeroGPU
|
| 5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 6 |
from peft import PeftModel
|
| 7 |
|
|
|
|
| 14 |
print("🔄 Loading base model and LoRA adapter...")
|
| 15 |
|
| 16 |
bnb_config = BitsAndBytesConfig(
|
| 17 |
+
load_in_4bit=True, # 4-bit quantization for GPU memory efficiency
|
| 18 |
bnb_4bit_use_double_quant=True,
|
| 19 |
bnb_4bit_quant_type="nf4",
|
| 20 |
bnb_4bit_compute_dtype=torch.float16,
|
| 21 |
)
|
| 22 |
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
|
| 24 |
if tokenizer.pad_token is None:
|
| 25 |
tokenizer.pad_token = tokenizer.eos_token
|
| 26 |
|
|
|
|
| 39 |
|
| 40 |
|
| 41 |
# -------------------------------------------------
|
| 42 |
+
# GPU INFERENCE FUNCTION
|
| 43 |
# -------------------------------------------------
|
| 44 |
+
@spaces.GPU # 👈 Required for ZeroGPU runtime
|
| 45 |
def generate_response(message, history, system_message, max_tokens, temperature, top_p):
|
| 46 |
"""
|
| 47 |
Generates text using the multitask LoRA model.
|
| 48 |
+
Supports reasoning, chat, summarization, story continuation, etc.
|
| 49 |
"""
|
|
|
|
|
|
|
| 50 |
prompt = f"{system_message}\n\n"
|
| 51 |
for turn in history:
|
| 52 |
prompt += f"User: {turn['content']}\nAssistant: {turn.get('response', '')}\n"
|
|
|
|
| 66 |
)
|
| 67 |
|
| 68 |
text = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
| 69 |
answer = text.split("Assistant:")[-1].strip()
|
| 70 |
|
| 71 |
return answer
|
|
|
|
| 104 |
- **Base:** `deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B`
|
| 105 |
- **Capabilities:**
|
| 106 |
🧩 Reasoning, 🗣️ Chat, 📧 Email writing, 📚 Summarization, ✍️ Story continuation, 🧾 Report generation
|
| 107 |
+
- **ZeroGPU Enabled:** GPU spins up only when generating responses.
|
| 108 |
"""
|
| 109 |
)
|
| 110 |
chatbot.render()
|