Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,43 +1,32 @@
|
|
|
|
|
| 1 |
import requests
|
| 2 |
from PIL import Image
|
| 3 |
-
from transformers import
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
def visual_qna():
|
| 35 |
-
st.title("Visual Q&A")
|
| 36 |
-
img = load_image()
|
| 37 |
-
if img:
|
| 38 |
-
if query := st.chat_input("Enter your message"):
|
| 39 |
-
response = model(question=query, image=img)
|
| 40 |
-
with st.chat_message("assistant"):
|
| 41 |
-
st.write(response)
|
| 42 |
-
else:
|
| 43 |
-
st.warning("Please enter an image URL and click 'Load Image' before asking a question.")
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
import requests
|
| 3 |
from PIL import Image
|
| 4 |
+
from transformers import BlipProcessor, BlipForQuestionAnswering
|
| 5 |
+
|
| 6 |
+
# Model Loading
|
| 7 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large")
|
| 8 |
+
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large")
|
| 9 |
+
|
| 10 |
+
# Streamlit App Structure
|
| 11 |
+
st.title("Visual Question Answering ")
|
| 12 |
+
|
| 13 |
+
def get_image():
|
| 14 |
+
img_url = st.text_input("Enter Image URL", value='https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg')
|
| 15 |
+
if img_url:
|
| 16 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
| 17 |
+
st.image(raw_image)
|
| 18 |
+
return raw_image
|
| 19 |
+
|
| 20 |
+
def process_vqa(image, question):
|
| 21 |
+
if image and question:
|
| 22 |
+
inputs = processor(image, question, return_tensors="pt")
|
| 23 |
+
output = model.generate(**inputs)
|
| 24 |
+
answer = processor.decode(output[0], skip_special_tokens=True)
|
| 25 |
+
st.write("Answer:", answer)
|
| 26 |
+
|
| 27 |
+
# User Input
|
| 28 |
+
image = get_image()
|
| 29 |
+
question = st.text_input("Ask your question about the image:")
|
| 30 |
+
|
| 31 |
+
# Process Question and Generate Answer
|
| 32 |
+
process_vqa(image, question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|