Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
rom langchain.document_loaders import DirectoryLoader
|
| 2 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 3 |
+
import os
|
| 4 |
+
import pinecone
|
| 5 |
+
from langchain.vectorstores import Pinecone
|
| 6 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 7 |
+
from langchain.chains import RetrievalQA
|
| 8 |
+
from langchain.chat_models import ChatOpenAI
|
| 9 |
+
import streamlit as st
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
+
|
| 12 |
+
load_dotenv()
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
PINECONE_API_KEY = os.getenv('PINECONE_API_KEY')
|
| 16 |
+
PINECONE_ENV = os.getenv('PINECONE_ENV')
|
| 17 |
+
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
| 18 |
+
|
| 19 |
+
os.environ['OPENAI_API_KEY'] = OPENAI_API_KEY
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def doc_preprocessing():
|
| 23 |
+
loader = DirectoryLoader(
|
| 24 |
+
'data/',
|
| 25 |
+
glob='**/*.pdf', # only the PDFs
|
| 26 |
+
show_progress=True
|
| 27 |
+
)
|
| 28 |
+
docs = loader.load()
|
| 29 |
+
text_splitter = CharacterTextSplitter(
|
| 30 |
+
chunk_size=1000,
|
| 31 |
+
chunk_overlap=0
|
| 32 |
+
)
|
| 33 |
+
docs_split = text_splitter.split_documents(docs)
|
| 34 |
+
return docs_split
|
| 35 |
+
|
| 36 |
+
@st.cache_resource
|
| 37 |
+
def embedding_db():
|
| 38 |
+
# we use the openAI embedding model
|
| 39 |
+
embeddings = OpenAIEmbeddings()
|
| 40 |
+
pinecone.init(
|
| 41 |
+
api_key=PINECONE_API_KEY,
|
| 42 |
+
environment=PINECONE_ENV
|
| 43 |
+
)
|
| 44 |
+
docs_split = doc_preprocessing()
|
| 45 |
+
doc_db = Pinecone.from_documents(
|
| 46 |
+
docs_split,
|
| 47 |
+
embeddings,
|
| 48 |
+
index_name='langchain-demo-indexes'
|
| 49 |
+
)
|
| 50 |
+
return doc_db
|
| 51 |
+
|
| 52 |
+
llm = ChatOpenAI()
|
| 53 |
+
doc_db = embedding_db()
|
| 54 |
+
|
| 55 |
+
def retrieval_answer(query):
|
| 56 |
+
qa = RetrievalQA.from_chain_type(
|
| 57 |
+
llm=llm,
|
| 58 |
+
chain_type='stuff',
|
| 59 |
+
retriever=doc_db.as_retriever(),
|
| 60 |
+
)
|
| 61 |
+
query = query
|
| 62 |
+
result = qa.run(query)
|
| 63 |
+
return result
|
| 64 |
+
|
| 65 |
+
def main():
|
| 66 |
+
st.title("Question and Answering App powered by LLM and Pinecone")
|
| 67 |
+
|
| 68 |
+
text_input = st.text_input("Ask your query...")
|
| 69 |
+
if st.button("Ask Query"):
|
| 70 |
+
if len(text_input)>0:
|
| 71 |
+
st.info("Your Query: " + text_input)
|
| 72 |
+
answer = retrieval_answer(text_input)
|
| 73 |
+
st.success(answer)
|
| 74 |
+
|
| 75 |
+
if __name__ == "__main__":
|
| 76 |
+
main()
|