Rename appCODE.py to app.py
Browse files- appCODE.py → app.py +8 -12
appCODE.py → app.py
RENAMED
|
@@ -24,22 +24,21 @@ pipeline = StableDiffusion3Pipeline.from_pretrained(
|
|
| 24 |
).to(device)
|
| 25 |
|
| 26 |
# Load the LoRA trained weights once at the start
|
| 27 |
-
lora_path = "lora_trained_model.
|
| 28 |
if os.path.exists(lora_path):
|
| 29 |
try:
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
pipeline.load_lora_weights(lora_path) # This automatically applies to the right components
|
| 33 |
-
print("✅ LoRA weights loaded successfully!")
|
| 34 |
-
else:
|
| 35 |
-
print("❌ LoRA weights method not available. Manually loading weights.")
|
| 36 |
-
# Optionally, you can manually load the weights using keys (refer to your printed keys)
|
| 37 |
-
# Example: pipeline.model.load_state_dict(torch.load(lora_path))
|
| 38 |
except Exception as e:
|
| 39 |
print(f"❌ Error loading LoRA: {e}")
|
| 40 |
else:
|
| 41 |
print("⚠️ LoRA file not found! Running base model.")
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
# Ensure GPU allocation in Hugging Face Spaces
|
| 44 |
@spaces.GPU(duration=65)
|
| 45 |
def generate_image(prompt: str, seed: int = None):
|
|
@@ -66,6 +65,3 @@ with gr.Blocks() as demo:
|
|
| 66 |
output_image = gr.Image(label="Generated Image")
|
| 67 |
|
| 68 |
generate_btn.click(generate_image, inputs=[prompt_input, seed_input], outputs=output_image)
|
| 69 |
-
|
| 70 |
-
# Launch Gradio App
|
| 71 |
-
demo.launch()
|
|
|
|
| 24 |
).to(device)
|
| 25 |
|
| 26 |
# Load the LoRA trained weights once at the start
|
| 27 |
+
lora_path = "lora_trained_model.safetensors" # Ensure this file is uploaded in the Space
|
| 28 |
if os.path.exists(lora_path):
|
| 29 |
try:
|
| 30 |
+
SD3LoraLoaderMixin.load_lora_into_model(pipeline, lora_path)
|
| 31 |
+
print("✅ LoRA weights loaded successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
except Exception as e:
|
| 33 |
print(f"❌ Error loading LoRA: {e}")
|
| 34 |
else:
|
| 35 |
print("⚠️ LoRA file not found! Running base model.")
|
| 36 |
|
| 37 |
+
# Verify if LoRA is applied
|
| 38 |
+
for name, param in pipeline.text_encoder.named_parameters():
|
| 39 |
+
if "lora" in name.lower():
|
| 40 |
+
print(f"LoRA applied to: {name}, requires_grad={param.requires_grad}")
|
| 41 |
+
|
| 42 |
# Ensure GPU allocation in Hugging Face Spaces
|
| 43 |
@spaces.GPU(duration=65)
|
| 44 |
def generate_image(prompt: str, seed: int = None):
|
|
|
|
| 65 |
output_image = gr.Image(label="Generated Image")
|
| 66 |
|
| 67 |
generate_btn.click(generate_image, inputs=[prompt_input, seed_input], outputs=output_image)
|
|
|
|
|
|
|
|
|