Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
-
from diffusers import StableDiffusionPipeline
|
| 2 |
import torch
|
| 3 |
-
import
|
| 4 |
from huggingface_hub import login
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Retrieve the token from the environment variable
|
| 7 |
token = os.getenv("HF_TOKEN") # Hugging Face token from the secret
|
|
@@ -12,20 +13,33 @@ else:
|
|
| 12 |
|
| 13 |
# Load the Stable Diffusion 3.5 model
|
| 14 |
model_id = "stabilityai/stable-diffusion-3.5-large"
|
| 15 |
-
pipe =
|
| 16 |
pipe.to("cuda")
|
| 17 |
|
| 18 |
-
# Define the path to the LoRA model
|
| 19 |
-
lora_model_path = "lora_model.pth" #
|
| 20 |
|
| 21 |
-
#
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
# Function to generate an image from a text prompt
|
| 25 |
def generate_image(prompt):
|
| 26 |
image = pipe(prompt).images[0]
|
| 27 |
return image
|
| 28 |
|
| 29 |
-
|
| 30 |
iface = gr.Interface(fn=generate_image, inputs="text", outputs="image")
|
| 31 |
-
iface.launch()
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from diffusers import StableDiffusionPipeline
|
| 3 |
from huggingface_hub import login
|
| 4 |
+
import os
|
| 5 |
+
import gradio as gr
|
| 6 |
|
| 7 |
# Retrieve the token from the environment variable
|
| 8 |
token = os.getenv("HF_TOKEN") # Hugging Face token from the secret
|
|
|
|
| 13 |
|
| 14 |
# Load the Stable Diffusion 3.5 model
|
| 15 |
model_id = "stabilityai/stable-diffusion-3.5-large"
|
| 16 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 17 |
pipe.to("cuda")
|
| 18 |
|
| 19 |
+
# Define the path to the LoRA model
|
| 20 |
+
lora_model_path = "https://huggingface.co/spaces/DonImages/Testing2/resolve/main/lora_model.pth" # LoRA model path
|
| 21 |
|
| 22 |
+
# Custom method to load and apply LoRA weights to the Stable Diffusion pipeline
|
| 23 |
+
def load_lora_model(pipe, lora_model_path):
|
| 24 |
+
# Load the LoRA weights (assuming it's a PyTorch .pth file)
|
| 25 |
+
lora_weights = torch.load(lora_model_path, map_location="cuda")
|
| 26 |
+
|
| 27 |
+
# Modify this section based on how LoRA is intended to interact with your Stable Diffusion model
|
| 28 |
+
# Here, we just load the weights into the model's parameters (this is a conceptual approach)
|
| 29 |
+
for name, param in pipe.named_parameters():
|
| 30 |
+
if name in lora_weights:
|
| 31 |
+
param.data += lora_weights[name] # Apply LoRA weights to the parameters
|
| 32 |
+
|
| 33 |
+
return pipe # Return the updated model
|
| 34 |
+
|
| 35 |
+
# Load and apply the LoRA model weights
|
| 36 |
+
pipe = load_lora_model(pipe, lora_model_path)
|
| 37 |
|
| 38 |
# Function to generate an image from a text prompt
|
| 39 |
def generate_image(prompt):
|
| 40 |
image = pipe(prompt).images[0]
|
| 41 |
return image
|
| 42 |
|
| 43 |
+
# Gradio interface
|
| 44 |
iface = gr.Interface(fn=generate_image, inputs="text", outputs="image")
|
| 45 |
+
iface.launch()
|