Uploading a few agents: web_search, arxiv_search.
Browse files- module_agent_arxiv.py +206 -0
- module_agent_web_search.py +233 -0
module_agent_arxiv.py
ADDED
|
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
File: web_app/module_agent_arxiv.py
|
| 3 |
+
Description: an agent with a tool to search arXiv papers.
|
| 4 |
+
Author: Didier Guillevic
|
| 5 |
+
Date: 2025-10-21
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
from google.adk.agents import Agent
|
| 11 |
+
from google.adk.runners import Runner
|
| 12 |
+
from google.adk.sessions import InMemorySessionService
|
| 13 |
+
from google.adk.tools import google_search
|
| 14 |
+
from google.genai import types
|
| 15 |
+
|
| 16 |
+
import asyncio
|
| 17 |
+
import uuid
|
| 18 |
+
|
| 19 |
+
import pydantic
|
| 20 |
+
import arxiv
|
| 21 |
+
|
| 22 |
+
APP_NAME="arxiv_agent"
|
| 23 |
+
SESSION_ID="1234"
|
| 24 |
+
|
| 25 |
+
model = "gemini-2.5-flash"
|
| 26 |
+
|
| 27 |
+
#
|
| 28 |
+
# ===== tool: arXiv search =====
|
| 29 |
+
#
|
| 30 |
+
class PaperArxivInfo(pydantic.BaseModel):
|
| 31 |
+
paper_id: str
|
| 32 |
+
title: str
|
| 33 |
+
authors: list[str]
|
| 34 |
+
summary: str
|
| 35 |
+
pdf_url: str
|
| 36 |
+
published: str
|
| 37 |
+
|
| 38 |
+
def search_arxiv(query: str, max_results: int=3) -> list[PaperArxivInfo]:
|
| 39 |
+
"""Search for scientific papers on arXiv. By default returns only top 3 results unless otherwise requested by user.
|
| 40 |
+
|
| 41 |
+
Parameters:
|
| 42 |
+
query: The search query.
|
| 43 |
+
max_results: Maximum number of results (typically between 1 and 10). Default is 3.
|
| 44 |
+
"""
|
| 45 |
+
print(f"[DEBUG] Tool search_arxiv received: query={query!r}, max_results={max_results!r}")
|
| 46 |
+
print(f"Calling search_arxiv with query: {query} and max_results: {max_results}")
|
| 47 |
+
|
| 48 |
+
# max_results is set to 3000000000000000 by the agent when not specified, so we cap it here
|
| 49 |
+
if max_results > 10:
|
| 50 |
+
max_results = 10
|
| 51 |
+
print(f"max_results capped to: {max_results}")
|
| 52 |
+
|
| 53 |
+
search = arxiv.Search(
|
| 54 |
+
query=query,
|
| 55 |
+
max_results=max_results,
|
| 56 |
+
sort_by=arxiv.SortCriterion.Relevance
|
| 57 |
+
)
|
| 58 |
+
results = arxiv.Client().results(search)
|
| 59 |
+
|
| 60 |
+
papers = []
|
| 61 |
+
for result in results:
|
| 62 |
+
paper_info = PaperArxivInfo(
|
| 63 |
+
paper_id=result.get_short_id(),
|
| 64 |
+
title=result.title,
|
| 65 |
+
authors=[author.name for author in result.authors],
|
| 66 |
+
summary=result.summary,
|
| 67 |
+
pdf_url=result.pdf_url,
|
| 68 |
+
published=result.published.strftime("%Y-%m-%d")
|
| 69 |
+
)
|
| 70 |
+
print(f"{paper_info=}")
|
| 71 |
+
papers.append(paper_info)
|
| 72 |
+
|
| 73 |
+
return papers
|
| 74 |
+
|
| 75 |
+
#
|
| 76 |
+
# ===== agent =====
|
| 77 |
+
#
|
| 78 |
+
root_agent = Agent(
|
| 79 |
+
name="arxiv_search_agent",
|
| 80 |
+
model=model,
|
| 81 |
+
description=(
|
| 82 |
+
"Agent to answer questions with the option to call arXiv Search "
|
| 83 |
+
"if needed for up-to-date scientific paper information."
|
| 84 |
+
),
|
| 85 |
+
instruction=(
|
| 86 |
+
"I can answer your questions from my own knowledge or by searching the "
|
| 87 |
+
"arXiv paper repository using the arXiv Search tool. When returning "
|
| 88 |
+
"results about arXiv paperr, I should provide paper titles, authors, "
|
| 89 |
+
"summaries, as well as links to the papers. "
|
| 90 |
+
"Just ask me anything!"
|
| 91 |
+
),
|
| 92 |
+
tools=[search_arxiv]
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
#
|
| 96 |
+
# ==== Session and Runner =====
|
| 97 |
+
#
|
| 98 |
+
async def setup_session_and_runner(user_id: str):
|
| 99 |
+
session_service = InMemorySessionService()
|
| 100 |
+
session = await session_service.create_session(
|
| 101 |
+
app_name=APP_NAME,
|
| 102 |
+
user_id=user_id,
|
| 103 |
+
session_id=SESSION_ID
|
| 104 |
+
)
|
| 105 |
+
runner = Runner(
|
| 106 |
+
agent=root_agent,
|
| 107 |
+
app_name=APP_NAME,
|
| 108 |
+
session_service=session_service
|
| 109 |
+
)
|
| 110 |
+
return session, runner
|
| 111 |
+
|
| 112 |
+
#
|
| 113 |
+
# ==== Call Agent Asynchronously =====
|
| 114 |
+
#
|
| 115 |
+
async def call_agent_async(query: str, user_id: str):
|
| 116 |
+
content = types.Content(role='user', parts=[types.Part(text=query)])
|
| 117 |
+
session, runner = await setup_session_and_runner(user_id=user_id)
|
| 118 |
+
events = runner.run_async(
|
| 119 |
+
user_id=user_id,
|
| 120 |
+
session_id=SESSION_ID,
|
| 121 |
+
new_message=content
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
final_response = ""
|
| 125 |
+
|
| 126 |
+
async for event in events:
|
| 127 |
+
if event.is_final_response():
|
| 128 |
+
final_response = event.content.parts[0].text
|
| 129 |
+
|
| 130 |
+
return final_response
|
| 131 |
+
|
| 132 |
+
#
|
| 133 |
+
# ===== User interface Block =====
|
| 134 |
+
#
|
| 135 |
+
def agent_arxiv_search(query: str, user_id=None):
|
| 136 |
+
"""Calls a language model agent with arXiv Search tool to answer the query.
|
| 137 |
+
|
| 138 |
+
Args:
|
| 139 |
+
query (str): The user query.
|
| 140 |
+
user_id (str, optional): The user ID for session management. If None, a new ID is generated. Defaults to None.
|
| 141 |
+
|
| 142 |
+
Returns:
|
| 143 |
+
the agent's response (str).
|
| 144 |
+
"""
|
| 145 |
+
if user_id is None:
|
| 146 |
+
user_id = str(uuid.uuid4()) # Generate a unique user ID
|
| 147 |
+
|
| 148 |
+
response = asyncio.run(call_agent_async(query, user_id))
|
| 149 |
+
return response, user_id
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
with gr.Blocks() as demo:
|
| 153 |
+
gr.Markdown(
|
| 154 |
+
"""
|
| 155 |
+
**Agent with arXiv search tool**: be patient :-) Currently looking into (async) streaming support...
|
| 156 |
+
"""
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
with gr.Row():
|
| 160 |
+
input_text = gr.Textbox(
|
| 161 |
+
lines=2,
|
| 162 |
+
placeholder="Enter your query here...",
|
| 163 |
+
label="Query",
|
| 164 |
+
render=True
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
user_id = gr.State(None)
|
| 168 |
+
|
| 169 |
+
with gr.Row():
|
| 170 |
+
submit_button = gr.Button("Submit", variant="primary")
|
| 171 |
+
clear_button = gr.Button("Clear", variant="secondary")
|
| 172 |
+
|
| 173 |
+
with gr.Row():
|
| 174 |
+
output_text = gr.Markdown(
|
| 175 |
+
label="Agent Response",
|
| 176 |
+
render=True
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
with gr.Accordion("Examples", open=False):
|
| 180 |
+
examples = gr.Examples(
|
| 181 |
+
examples=[
|
| 182 |
+
["What is the prime number factorization of 21?",], # no need got Google Search
|
| 183 |
+
["Can you search for a few papers on arXiv related to privacy preserving machine learning applied to language models.",],
|
| 184 |
+
["Find five papers on arXiv about graph neural networks applied to financial transactions.",],
|
| 185 |
+
],
|
| 186 |
+
inputs=[input_text,],
|
| 187 |
+
cache_examples=False,
|
| 188 |
+
label="Click to use an example"
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
# ===== Button Actions =====
|
| 192 |
+
submit_button.click(
|
| 193 |
+
fn=agent_arxiv_search,
|
| 194 |
+
inputs=[input_text, user_id],
|
| 195 |
+
outputs=[output_text, user_id]
|
| 196 |
+
)
|
| 197 |
+
clear_button.click(
|
| 198 |
+
fn=lambda : ('', None),
|
| 199 |
+
inputs=None,
|
| 200 |
+
outputs=[input_text, output_text]
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
if __name__ == "__main__":
|
| 205 |
+
demo.launch(mcp_server=True)
|
| 206 |
+
|
module_agent_web_search.py
ADDED
|
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
File: web_app/module_agent_web_search.py
|
| 3 |
+
Description: Gradio module for the Agent Web Search functionality.
|
| 4 |
+
Author: Didier Guillevic
|
| 5 |
+
Date: 2025-10-20
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
from google.adk.agents import Agent
|
| 11 |
+
from google.adk.runners import Runner
|
| 12 |
+
from google.adk.sessions import InMemorySessionService
|
| 13 |
+
from google.adk.tools import google_search
|
| 14 |
+
from google.genai import types
|
| 15 |
+
|
| 16 |
+
import asyncio
|
| 17 |
+
import uuid
|
| 18 |
+
|
| 19 |
+
APP_NAME="google_search_agent"
|
| 20 |
+
SESSION_ID="1234"
|
| 21 |
+
|
| 22 |
+
model = "gemini-2.5-flash"
|
| 23 |
+
|
| 24 |
+
#
|
| 25 |
+
# ===== agent =====
|
| 26 |
+
#
|
| 27 |
+
root_agent = Agent(
|
| 28 |
+
name="basic_search_agent",
|
| 29 |
+
model=model,
|
| 30 |
+
description=(
|
| 31 |
+
"Agent to answer questions with the option to call Google Search "
|
| 32 |
+
"if needed for up-to-date information."
|
| 33 |
+
),
|
| 34 |
+
instruction=(
|
| 35 |
+
"I can answer your questions from my own knowledge or by searching the "
|
| 36 |
+
"web using Google Search. Just ask me anything!"
|
| 37 |
+
),
|
| 38 |
+
# google_search: pre-built tool allows agent to perform Google searches.
|
| 39 |
+
tools=[google_search]
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
#
|
| 43 |
+
# ===== Session and Runner =====
|
| 44 |
+
#
|
| 45 |
+
async def setup_session_and_runner(user_id: str):
|
| 46 |
+
session_service = InMemorySessionService()
|
| 47 |
+
session = await session_service.create_session(
|
| 48 |
+
app_name=APP_NAME,
|
| 49 |
+
user_id=user_id,
|
| 50 |
+
session_id=SESSION_ID
|
| 51 |
+
)
|
| 52 |
+
runner = Runner(
|
| 53 |
+
agent=root_agent,
|
| 54 |
+
app_name=APP_NAME,
|
| 55 |
+
session_service=session_service
|
| 56 |
+
)
|
| 57 |
+
return session, runner
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
#
|
| 61 |
+
# ===== Call Agent Asynchronously =====
|
| 62 |
+
#
|
| 63 |
+
async def call_agent_async(query: str, user_id: str):
|
| 64 |
+
content = types.Content(role='user', parts=[types.Part(text=query)])
|
| 65 |
+
session, runner = await setup_session_and_runner(user_id=user_id)
|
| 66 |
+
events = runner.run_async(
|
| 67 |
+
user_id=user_id,
|
| 68 |
+
session_id=SESSION_ID,
|
| 69 |
+
new_message=content
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
final_response = ""
|
| 73 |
+
rendered_content = ""
|
| 74 |
+
|
| 75 |
+
async for event in events:
|
| 76 |
+
if event.is_final_response():
|
| 77 |
+
final_response = event.content.parts[0].text
|
| 78 |
+
|
| 79 |
+
# Check if the event has grounding metadata and rendered content
|
| 80 |
+
if (
|
| 81 |
+
event.grounding_metadata and
|
| 82 |
+
event.grounding_metadata.search_entry_point and
|
| 83 |
+
event.grounding_metadata.search_entry_point.rendered_content
|
| 84 |
+
):
|
| 85 |
+
rendered_content = event.grounding_metadata.search_entry_point.rendered_content
|
| 86 |
+
else:
|
| 87 |
+
rendered_content = None
|
| 88 |
+
|
| 89 |
+
return final_response, rendered_content
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
#
|
| 93 |
+
# ===== Call Agent Asynchronously with Streaming =====
|
| 94 |
+
#
|
| 95 |
+
async def call_agent_streaming(query: str, user_id: str):
|
| 96 |
+
content = types.Content(role='user', parts=[types.Part(text=query)])
|
| 97 |
+
session, runner = await setup_session_and_runner(user_id=user_id)
|
| 98 |
+
events = runner.run_async(
|
| 99 |
+
user_id=user_id,
|
| 100 |
+
session_id=SESSION_ID,
|
| 101 |
+
new_message=content
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
accumulated_response = ""
|
| 105 |
+
rendered_content = None # Initialize to None
|
| 106 |
+
|
| 107 |
+
async for event in events:
|
| 108 |
+
# Check for intermediate text parts to stream
|
| 109 |
+
if event.content and event.content.parts and event.content.parts[0].text:
|
| 110 |
+
# Accumulate and yield the new text
|
| 111 |
+
new_text = event.content.parts[0].text
|
| 112 |
+
accumulated_response += new_text
|
| 113 |
+
yield accumulated_response, None, user_id # Yield the current text and empty grounding
|
| 114 |
+
|
| 115 |
+
# When the final response event is received, capture the grounding content
|
| 116 |
+
if event.is_final_response():
|
| 117 |
+
# The final response text should already be in accumulated_response from earlier yields,
|
| 118 |
+
# but we can ensure it's fully captured here.
|
| 119 |
+
# accumulated_response = event.content.parts[0].text # The final text
|
| 120 |
+
|
| 121 |
+
# Capture the rendered_content from grounding_metadata
|
| 122 |
+
if (
|
| 123 |
+
event.grounding_metadata and
|
| 124 |
+
event.grounding_metadata.search_entry_point and
|
| 125 |
+
event.grounding_metadata.search_entry_point.rendered_content
|
| 126 |
+
):
|
| 127 |
+
rendered_content = event.grounding_metadata.search_entry_point.rendered_content
|
| 128 |
+
|
| 129 |
+
# After the final response, yield one last time with the accumulated text AND the grounding content
|
| 130 |
+
# This final yield updates the grounding block.
|
| 131 |
+
yield accumulated_response, rendered_content, user_id
|
| 132 |
+
|
| 133 |
+
# If the grounding content wasn't in the final event (e.g., if no search was performed),
|
| 134 |
+
# make sure to yield the final accumulated text.
|
| 135 |
+
if rendered_content is None:
|
| 136 |
+
yield accumulated_response, None, user_id
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
#
|
| 140 |
+
# ===== User interface Block =====
|
| 141 |
+
#
|
| 142 |
+
def agent_web_search(query: str, user_id=None):
|
| 143 |
+
"""Calls a language model agent with Google Search tool to answer the query.
|
| 144 |
+
|
| 145 |
+
Args:
|
| 146 |
+
query (str): The user query.
|
| 147 |
+
user_id (str, optional): The user ID for session management. If None, a new ID is generated. Defaults to None.
|
| 148 |
+
|
| 149 |
+
Returns:
|
| 150 |
+
tuple: A tuple containing the agent's response (str), rendered grounding content (str or None), and user_id (str).
|
| 151 |
+
"""
|
| 152 |
+
if user_id is None:
|
| 153 |
+
user_id = str(uuid.uuid4()) # Generate a unique user ID
|
| 154 |
+
|
| 155 |
+
response, rendered_content = asyncio.run(call_agent_async(query, user_id))
|
| 156 |
+
return response, rendered_content, user_id
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
async def agent_web_search_streaming(query: str, current_user_id: str | None):
|
| 160 |
+
# If the user ID state is None (first run), generate a new one
|
| 161 |
+
if current_user_id is None:
|
| 162 |
+
user_id = str(uuid.uuid4())
|
| 163 |
+
else:
|
| 164 |
+
user_id = current_user_id
|
| 165 |
+
|
| 166 |
+
# The user_id is passed as part of the yield from the generator
|
| 167 |
+
# but we need to ensure the Gradio state is updated initially for the generator to use the correct ID.
|
| 168 |
+
|
| 169 |
+
# Gradio handles the asynchronous generator return and streams the output to the UI.
|
| 170 |
+
return call_agent_streaming(query, user_id)
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
with gr.Blocks() as demo:
|
| 174 |
+
gr.Markdown(
|
| 175 |
+
"""
|
| 176 |
+
**Agent with Google Search tool**: be patient :-) Currently looking into (async) streaming support...
|
| 177 |
+
"""
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
with gr.Row():
|
| 181 |
+
input_text = gr.Textbox(
|
| 182 |
+
lines=2,
|
| 183 |
+
placeholder="Enter your query here...",
|
| 184 |
+
label="Query",
|
| 185 |
+
render=True
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
user_id = gr.State(None)
|
| 189 |
+
|
| 190 |
+
with gr.Row():
|
| 191 |
+
submit_button = gr.Button("Submit", variant="primary")
|
| 192 |
+
clear_button = gr.Button("Clear", variant="secondary")
|
| 193 |
+
|
| 194 |
+
with gr.Row():
|
| 195 |
+
output_text = gr.Markdown(
|
| 196 |
+
label="Agent Response",
|
| 197 |
+
render=True
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
with gr.Row():
|
| 201 |
+
grounding = gr.HTML(
|
| 202 |
+
label="Grounding Content",
|
| 203 |
+
render=True
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
with gr.Accordion("Examples", open=False):
|
| 207 |
+
examples = gr.Examples(
|
| 208 |
+
examples=[
|
| 209 |
+
["What is the prime number factorization of 15?",], # no need got Google Search
|
| 210 |
+
["Who won the Nobel Peace Prize in 2025?",],
|
| 211 |
+
["What is the weather like tomorrow in Montreal, Canada?",],
|
| 212 |
+
["What are the latest news about Graph Neural Networks?",],
|
| 213 |
+
],
|
| 214 |
+
inputs=[input_text,],
|
| 215 |
+
cache_examples=False,
|
| 216 |
+
label="Click to use an example"
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
# ===== Button Actions =====
|
| 220 |
+
submit_button.click(
|
| 221 |
+
fn=agent_web_search,
|
| 222 |
+
inputs=[input_text, user_id],
|
| 223 |
+
outputs=[output_text, grounding, user_id]
|
| 224 |
+
)
|
| 225 |
+
clear_button.click(
|
| 226 |
+
fn=lambda : ('', '', None),
|
| 227 |
+
inputs=None,
|
| 228 |
+
outputs=[input_text, output_text, grounding]
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
if __name__ == "__main__":
|
| 233 |
+
demo.launch(mcp_server=True)
|