Update README.md
Browse files
README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
title: EEG Mental Arithmetic Task Visualizer
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: docker
|
| 7 |
app_port: 8501
|
| 8 |
tags:
|
|
@@ -11,9 +11,79 @@ pinned: false
|
|
| 11 |
short_description: EEG Visualizer & Data Exploration Space
|
| 12 |
---
|
| 13 |
|
| 14 |
-
#
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
title: EEG Mental Arithmetic Task Visualizer
|
| 3 |
+
emoji: π»
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: docker
|
| 7 |
app_port: 8501
|
| 8 |
tags:
|
|
|
|
| 11 |
short_description: EEG Visualizer & Data Exploration Space
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# π§ EEG Mental Arithmetic Explorer
|
| 15 |
|
| 16 |
+
Interactive visualization tool for exploring the EEG During Mental Arithmetic Tasks dataset.
|
| 17 |
|
| 18 |
+
## Repository Structure
|
| 19 |
+
|
| 20 |
+
```
|
| 21 |
+
space/
|
| 22 |
+
βββ scr/
|
| 23 |
+
βββββββ app.py # Main Streamlit application
|
| 24 |
+
βββ requirements.txt # Python dependencies
|
| 25 |
+
βββ README.md # This file
|
| 26 |
+
βββ edf_files.zip # Compressed EDF files (auto-extracted on launch)
|
| 27 |
+
```
|
| 28 |
+
|
| 29 |
+
The EDF files are automatically extracted when the Space starts.
|
| 30 |
+
|
| 31 |
+
## Features
|
| 32 |
+
|
| 33 |
+
### π Signal Viewer
|
| 34 |
+
- Visualize EEG signals from 23 channels
|
| 35 |
+
- Stacked or overlay plot options
|
| 36 |
+
- Adjustable time windows
|
| 37 |
+
- Multi-channel selection
|
| 38 |
+
|
| 39 |
+
### π Spectral Analysis
|
| 40 |
+
- Power Spectral Density (PSD) visualization
|
| 41 |
+
- Frequency band analysis (Delta, Theta, Alpha, Beta, Gamma)
|
| 42 |
+
- Band power comparison
|
| 43 |
+
- Individual channel analysis
|
| 44 |
+
|
| 45 |
+
### π Statistics
|
| 46 |
+
- Channel-wise statistical metrics
|
| 47 |
+
- Correlation matrix heatmap
|
| 48 |
+
- Comprehensive data overview
|
| 49 |
+
|
| 50 |
+
### π€ Subject Selection
|
| 51 |
+
- Browse all subjects
|
| 52 |
+
- View performance groups (Good/Poor)
|
| 53 |
+
- Toggle between resting and task states
|
| 54 |
+
- Support for both CSV and EDF formats
|
| 55 |
+
|
| 56 |
+
## Dataset
|
| 57 |
+
|
| 58 |
+
This explorer uses the [EEG During Mental Arithmetic Tasks](https://huggingface.co/datasets/BrainSpectralAnalytics/eeg-mental-arithmetic) dataset containing:
|
| 59 |
+
- 36 subjects with paired recordings
|
| 60 |
+
- 23 EEG channels (International 10/20 system)
|
| 61 |
+
- Resting state and mental arithmetic task recordings
|
| 62 |
+
- Performance-based classification
|
| 63 |
+
|
| 64 |
+
## Usage
|
| 65 |
+
|
| 66 |
+
1. **Select Subject**: Choose from 36 available subjects
|
| 67 |
+
2. **Choose Recording**: Resting state or mental arithmetic task
|
| 68 |
+
3. **Select Format**: CSV (processed) or EDF (original)
|
| 69 |
+
4. **Explore**: Navigate through the different visualization tabs
|
| 70 |
+
|
| 71 |
+
## Citation
|
| 72 |
+
|
| 73 |
+
```bibtex
|
| 74 |
+
@article{zyma2019eegmat,
|
| 75 |
+
author = {Zyma, Igor and Tukaev, Sergii and Seleznov, Ivan and others},
|
| 76 |
+
title = {Electroencephalograms during Mental Arithmetic Task Performance},
|
| 77 |
+
journal = {Data},
|
| 78 |
+
volume = {4},
|
| 79 |
+
number = {1},
|
| 80 |
+
year = {2019},
|
| 81 |
+
doi = {10.3390/data4010014}
|
| 82 |
+
}
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
## Links
|
| 86 |
+
|
| 87 |
+
- [Dataset on Hugging Face](https://huggingface.co/datasets/BrainSpectralAnalytics/eeg-mental-arithmetic)
|
| 88 |
+
- [PhysioNet Page](https://physionet.org/content/eegmat/1.0.0/)
|
| 89 |
+
- [Original Paper](https://doi.org/10.3390/data4010014)
|