Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import plotly.graph_objects as go
|
| 5 |
+
from plotly.subplots import make_subplots
|
| 6 |
+
|
| 7 |
+
# Load data
|
| 8 |
+
def load_data():
|
| 9 |
+
"""Load the dataset from a local CSV file"""
|
| 10 |
+
df = pd.read_csv("EEG_Eye_State.csv")
|
| 11 |
+
return df
|
| 12 |
+
|
| 13 |
+
# Initialize data
|
| 14 |
+
df = load_data()
|
| 15 |
+
|
| 16 |
+
# List of EEG channels
|
| 17 |
+
eeg_channels = ['AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',
|
| 18 |
+
'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4']
|
| 19 |
+
|
| 20 |
+
def plot_eeg_signals(start_time, duration, eye_state_filter, selected_channels):
|
| 21 |
+
"""
|
| 22 |
+
Visualize the selected EEG signals
|
| 23 |
+
"""
|
| 24 |
+
# Calculate indices based on time (128 Hz)
|
| 25 |
+
sampling_rate = 128
|
| 26 |
+
start_idx = int(start_time * sampling_rate)
|
| 27 |
+
end_idx = start_idx + int(duration * sampling_rate)
|
| 28 |
+
|
| 29 |
+
# Filter data segment
|
| 30 |
+
df_segment = df.iloc[start_idx:end_idx].copy()
|
| 31 |
+
|
| 32 |
+
# Filter by eye state if selected
|
| 33 |
+
if eye_state_filter != "Both":
|
| 34 |
+
filter_value = 1 if eye_state_filter == "Closed" else 0
|
| 35 |
+
df_segment = df_segment[df_segment['eyeDetection'] == filter_value]
|
| 36 |
+
|
| 37 |
+
if len(df_segment) == 0:
|
| 38 |
+
return None
|
| 39 |
+
|
| 40 |
+
# Create subplots
|
| 41 |
+
n_channels = len(selected_channels)
|
| 42 |
+
fig = make_subplots(
|
| 43 |
+
rows=n_channels,
|
| 44 |
+
cols=1,
|
| 45 |
+
shared_xaxes=True,
|
| 46 |
+
vertical_spacing=0.02,
|
| 47 |
+
subplot_titles=selected_channels
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Create time axis
|
| 51 |
+
time_axis = np.arange(len(df_segment)) / sampling_rate + start_time
|
| 52 |
+
|
| 53 |
+
# Add each channell
|
| 54 |
+
for idx, channel in enumerate(selected_channels, 1):
|
| 55 |
+
# Color based on eye state
|
| 56 |
+
colors = ['red' if x == 1 else 'blue' for x in df_segment['eyeDetection']]
|
| 57 |
+
|
| 58 |
+
fig.add_trace(
|
| 59 |
+
go.Scatter(
|
| 60 |
+
x=time_axis,
|
| 61 |
+
y=df_segment[channel],
|
| 62 |
+
mode='lines',
|
| 63 |
+
name=channel,
|
| 64 |
+
line=dict(color='steelblue', width=1),
|
| 65 |
+
showlegend=False
|
| 66 |
+
),
|
| 67 |
+
row=idx, col=1
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# Add shaded areas for closed eyes
|
| 71 |
+
eye_closed_mask = df_segment['eyeDetection'] == 1
|
| 72 |
+
if eye_closed_mask.any():
|
| 73 |
+
closed_indices = np.where(eye_closed_mask)[0]
|
| 74 |
+
# Group consecutive indices
|
| 75 |
+
if len(closed_indices) > 0:
|
| 76 |
+
groups = np.split(closed_indices, np.where(np.diff(closed_indices) != 1)[0] + 1)
|
| 77 |
+
for group in groups:
|
| 78 |
+
if len(group) > 0:
|
| 79 |
+
fig.add_vrect(
|
| 80 |
+
x0=time_axis[group[0]],
|
| 81 |
+
x1=time_axis[group[-1]],
|
| 82 |
+
fillcolor="red", opacity=0.1,
|
| 83 |
+
layer="below", line_width=0,
|
| 84 |
+
row=idx, col=1
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# Update layout
|
| 88 |
+
fig.update_xaxes(title_text="Time (seconds)", row=n_channels, col=1)
|
| 89 |
+
fig.update_yaxes(title_text="Amplitude (μV)")
|
| 90 |
+
|
| 91 |
+
fig.update_layout(
|
| 92 |
+
height=200 * n_channels,
|
| 93 |
+
title_text=f"EEG Signals - {eye_state_filter} Eyes",
|
| 94 |
+
showlegend=False,
|
| 95 |
+
hovermode='x unified'
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
return fig
|
| 99 |
+
|
| 100 |
+
def plot_channel_comparison(channels, eye_state_filter, remove_outliers):
|
| 101 |
+
"""
|
| 102 |
+
Compare specific channels between open and closed eyes
|
| 103 |
+
"""
|
| 104 |
+
if not channels:
|
| 105 |
+
return None
|
| 106 |
+
|
| 107 |
+
n_channels = len(channels)
|
| 108 |
+
|
| 109 |
+
# Determine number of columns based on filter
|
| 110 |
+
n_cols = 2 if eye_state_filter == "Both" else 1
|
| 111 |
+
|
| 112 |
+
if eye_state_filter == "Both":
|
| 113 |
+
subplot_titles = [f'{ch} - Eyes Open' if i % 2 == 0 else f'{ch} - Eyes Closed'
|
| 114 |
+
for ch in channels for i in range(2)]
|
| 115 |
+
specs = [[{'type': 'box'}, {'type': 'histogram'}] for _ in range(n_channels)]
|
| 116 |
+
else:
|
| 117 |
+
state_label = "Eyes Open" if eye_state_filter == "Open" else "Eyes Closed"
|
| 118 |
+
subplot_titles = [f'{ch} - {state_label}' for ch in channels]
|
| 119 |
+
specs = [[{'type': 'box'}] for _ in range(n_channels)]
|
| 120 |
+
|
| 121 |
+
fig = make_subplots(
|
| 122 |
+
rows=n_channels, cols=n_cols,
|
| 123 |
+
subplot_titles=subplot_titles,
|
| 124 |
+
specs=specs,
|
| 125 |
+
vertical_spacing=0.08
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
for idx, channel in enumerate(channels, 1):
|
| 129 |
+
df_open = df[df['eyeDetection'] == 0][channel]
|
| 130 |
+
df_closed = df[df['eyeDetection'] == 1][channel]
|
| 131 |
+
|
| 132 |
+
# Filter outliers if requested
|
| 133 |
+
if remove_outliers:
|
| 134 |
+
def filter_outliers(data):
|
| 135 |
+
Q1 = data.quantile(0.25)
|
| 136 |
+
Q3 = data.quantile(0.75)
|
| 137 |
+
IQR = Q3 - Q1
|
| 138 |
+
lower_bound = Q1 - 1.5 * IQR
|
| 139 |
+
upper_bound = Q3 + 1.5 * IQR
|
| 140 |
+
return data[(data >= lower_bound) & (data <= upper_bound)]
|
| 141 |
+
|
| 142 |
+
df_open = filter_outliers(df_open)
|
| 143 |
+
df_closed = filter_outliers(df_closed)
|
| 144 |
+
|
| 145 |
+
if eye_state_filter in ["Both", "Open"]:
|
| 146 |
+
# Boxplot for Open
|
| 147 |
+
fig.add_trace(
|
| 148 |
+
go.Box(y=df_open, name=f'{channel} Open', marker_color='blue',
|
| 149 |
+
showlegend=(idx==1)),
|
| 150 |
+
row=idx, col=1
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
if eye_state_filter in ["Both", "Closed"]:
|
| 154 |
+
# Boxplot for Closed
|
| 155 |
+
fig.add_trace(
|
| 156 |
+
go.Box(y=df_closed, name=f'{channel} Closed', marker_color='red',
|
| 157 |
+
showlegend=(idx==1)),
|
| 158 |
+
row=idx, col=1
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
# Histogram only if "Both"
|
| 162 |
+
if eye_state_filter == "Both":
|
| 163 |
+
# Histograma Open
|
| 164 |
+
fig.add_trace(
|
| 165 |
+
go.Histogram(x=df_open, name=f'{channel} Open', marker_color='blue',
|
| 166 |
+
opacity=0.7, showlegend=False, nbinsx=30),
|
| 167 |
+
row=idx, col=2
|
| 168 |
+
)
|
| 169 |
+
# Histogram Closed
|
| 170 |
+
fig.add_trace(
|
| 171 |
+
go.Histogram(x=df_closed, name=f'{channel} Closed', marker_color='red',
|
| 172 |
+
opacity=0.7, showlegend=False, nbinsx=30),
|
| 173 |
+
row=idx, col=2
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# Center and adjust histogram axes
|
| 177 |
+
all_data = pd.concat([df_open, df_closed])
|
| 178 |
+
data_min = all_data.min()
|
| 179 |
+
data_max = all_data.max()
|
| 180 |
+
data_range = data_max - data_min
|
| 181 |
+
margin = data_range * 0.1
|
| 182 |
+
|
| 183 |
+
fig.update_xaxes(
|
| 184 |
+
range=[data_min - margin, data_max + margin],
|
| 185 |
+
row=idx, col=2
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
fig.update_layout(
|
| 189 |
+
height=350 * n_channels,
|
| 190 |
+
title_text=f"Channel Distribution Comparison - {eye_state_filter} Eyes",
|
| 191 |
+
showlegend=True
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
if eye_state_filter == "Both":
|
| 195 |
+
fig.update_xaxes(title_text="Amplitude (μV)", row=n_channels, col=2)
|
| 196 |
+
fig.update_yaxes(title_text="Amplitude (μV)")
|
| 197 |
+
|
| 198 |
+
return fig
|
| 199 |
+
|
| 200 |
+
def get_statistics():
|
| 201 |
+
"""
|
| 202 |
+
Generate dataset statistics in text format
|
| 203 |
+
"""
|
| 204 |
+
stats = []
|
| 205 |
+
|
| 206 |
+
# General information
|
| 207 |
+
total_samples = len(df)
|
| 208 |
+
eyes_open = len(df[df['eyeDetection'] == 0])
|
| 209 |
+
eyes_closed = len(df[df['eyeDetection'] == 1])
|
| 210 |
+
duration = total_samples / 128 # seconds
|
| 211 |
+
|
| 212 |
+
stats.append(f"**Dataset Statistics**")
|
| 213 |
+
stats.append(f"- Total samples: {total_samples:,}")
|
| 214 |
+
stats.append(f"- Duration: {duration:.2f} seconds")
|
| 215 |
+
stats.append(f"- Sampling rate: 128 Hz")
|
| 216 |
+
stats.append(f"- Eyes Open samples: {eyes_open:,} ({eyes_open/total_samples*100:.1f}%)")
|
| 217 |
+
stats.append(f"- Eyes Closed samples: {eyes_closed:,} ({eyes_closed/total_samples*100:.1f}%)")
|
| 218 |
+
|
| 219 |
+
return "\n".join(stats)
|
| 220 |
+
|
| 221 |
+
def get_statistics_table():
|
| 222 |
+
"""
|
| 223 |
+
Generate statistics table per channel
|
| 224 |
+
"""
|
| 225 |
+
stats_data = []
|
| 226 |
+
|
| 227 |
+
for channel in eeg_channels:
|
| 228 |
+
channel_data = df[channel]
|
| 229 |
+
open_data = df[df['eyeDetection'] == 0][channel]
|
| 230 |
+
closed_data = df[df['eyeDetection'] == 1][channel]
|
| 231 |
+
|
| 232 |
+
stats_data.append({
|
| 233 |
+
'Channel': channel,
|
| 234 |
+
'Mean (All)': f"{channel_data.mean():.2f}",
|
| 235 |
+
'Std (All)': f"{channel_data.std():.2f}",
|
| 236 |
+
'Mean (Open)': f"{open_data.mean():.2f}",
|
| 237 |
+
'Mean (Closed)': f"{closed_data.mean():.2f}",
|
| 238 |
+
'Min': f"{channel_data.min():.2f}",
|
| 239 |
+
'Max': f"{channel_data.max():.2f}"
|
| 240 |
+
})
|
| 241 |
+
|
| 242 |
+
return pd.DataFrame(stats_data)
|
| 243 |
+
|
| 244 |
+
def plot_correlation_matrix():
|
| 245 |
+
"""
|
| 246 |
+
Visualize the correlation matrix between channels
|
| 247 |
+
"""
|
| 248 |
+
corr_matrix = df[eeg_channels].corr()
|
| 249 |
+
|
| 250 |
+
fig = go.Figure(data=go.Heatmap(
|
| 251 |
+
z=corr_matrix.values,
|
| 252 |
+
x=eeg_channels,
|
| 253 |
+
y=eeg_channels,
|
| 254 |
+
colorscale='RdBu',
|
| 255 |
+
zmid=0,
|
| 256 |
+
text=corr_matrix.values,
|
| 257 |
+
texttemplate='%{text:.2f}',
|
| 258 |
+
textfont={"size": 9},
|
| 259 |
+
colorbar=dict(title="Correlation")
|
| 260 |
+
))
|
| 261 |
+
|
| 262 |
+
fig.update_layout(
|
| 263 |
+
title={
|
| 264 |
+
'text': "EEG Channels Correlation Matrix",
|
| 265 |
+
'x': 0.5,
|
| 266 |
+
'xanchor': 'center'
|
| 267 |
+
},
|
| 268 |
+
height=600,
|
| 269 |
+
width=1215,
|
| 270 |
+
xaxis={'side': 'bottom'}
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
return fig
|
| 274 |
+
|
| 275 |
+
# Create Gradio interface
|
| 276 |
+
demo = gr.Blocks(title="EEG Eye State Visualizer")
|
| 277 |
+
|
| 278 |
+
with demo:
|
| 279 |
+
|
| 280 |
+
gr.Markdown("""
|
| 281 |
+
# 🧠 EEG Eye State Visualizer
|
| 282 |
+
|
| 283 |
+
Explore and visualize the EEG Eye State Classification Dataset. This interactive tool allows you to:
|
| 284 |
+
- View EEG signals from 14 channels
|
| 285 |
+
- Compare patterns between open and closed eyes
|
| 286 |
+
- Analyze statistical distributions
|
| 287 |
+
- Examine channel correlations
|
| 288 |
+
|
| 289 |
+
**Dataset Info**: 14,980 samples | 128 Hz sampling rate | 14 EEG channels
|
| 290 |
+
""")
|
| 291 |
+
|
| 292 |
+
with gr.Tab("Signal Viewer"):
|
| 293 |
+
gr.Markdown("### Visualize EEG Signals")
|
| 294 |
+
|
| 295 |
+
with gr.Row():
|
| 296 |
+
with gr.Column(scale=1):
|
| 297 |
+
start_time = gr.Slider(
|
| 298 |
+
minimum=0,
|
| 299 |
+
maximum=117,
|
| 300 |
+
value=0,
|
| 301 |
+
step=0.5,
|
| 302 |
+
label="Start Time (seconds)"
|
| 303 |
+
)
|
| 304 |
+
duration = gr.Slider(
|
| 305 |
+
minimum=1,
|
| 306 |
+
maximum=10,
|
| 307 |
+
value=5,
|
| 308 |
+
step=0.5,
|
| 309 |
+
label="Duration (seconds)"
|
| 310 |
+
)
|
| 311 |
+
eye_state = gr.Radio(
|
| 312 |
+
choices=["Both", "Open", "Closed"],
|
| 313 |
+
value="Both",
|
| 314 |
+
label="Eye State Filter"
|
| 315 |
+
)
|
| 316 |
+
channels = gr.CheckboxGroup(
|
| 317 |
+
choices=eeg_channels,
|
| 318 |
+
value=['AF3', 'F7', 'O1', 'O2'],
|
| 319 |
+
label="Select Channels to Display"
|
| 320 |
+
)
|
| 321 |
+
plot_btn = gr.Button("Generate Plot", variant="primary")
|
| 322 |
+
|
| 323 |
+
with gr.Column(scale=3):
|
| 324 |
+
signal_plot = gr.Plot(label="EEG Signals")
|
| 325 |
+
|
| 326 |
+
plot_btn.click(
|
| 327 |
+
fn=plot_eeg_signals,
|
| 328 |
+
inputs=[start_time, duration, eye_state, channels],
|
| 329 |
+
outputs=signal_plot
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
with gr.Tab("Channel Analysis"):
|
| 333 |
+
gr.Markdown("### Compare Multiple Channels")
|
| 334 |
+
|
| 335 |
+
with gr.Row():
|
| 336 |
+
with gr.Column(scale=1):
|
| 337 |
+
channels_select = gr.CheckboxGroup(
|
| 338 |
+
choices=eeg_channels,
|
| 339 |
+
value=['AF3', 'O1'],
|
| 340 |
+
label="Select Channels to Compare"
|
| 341 |
+
)
|
| 342 |
+
eye_state_compare = gr.Radio(
|
| 343 |
+
choices=["Both", "Open", "Closed"],
|
| 344 |
+
value="Both",
|
| 345 |
+
label="Eye State Filter"
|
| 346 |
+
)
|
| 347 |
+
remove_outliers_check = gr.Checkbox(
|
| 348 |
+
label="Remove Outliers (IQR method)",
|
| 349 |
+
value=False
|
| 350 |
+
)
|
| 351 |
+
compare_btn = gr.Button("Analyze Channels", variant="primary")
|
| 352 |
+
|
| 353 |
+
with gr.Column(scale=3):
|
| 354 |
+
comparison_plot = gr.Plot(label="Channel Comparison")
|
| 355 |
+
|
| 356 |
+
compare_btn.click(
|
| 357 |
+
fn=plot_channel_comparison,
|
| 358 |
+
inputs=[channels_select, eye_state_compare, remove_outliers_check],
|
| 359 |
+
outputs=comparison_plot
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
with gr.Tab("Statistics"):
|
| 363 |
+
gr.Markdown("### Dataset Statistics")
|
| 364 |
+
|
| 365 |
+
stats_text = gr.Markdown(value=get_statistics())
|
| 366 |
+
|
| 367 |
+
gr.Markdown("### Channel Statistics Table (μV)")
|
| 368 |
+
stats_table = gr.Dataframe(
|
| 369 |
+
value=get_statistics_table(),
|
| 370 |
+
interactive=False,
|
| 371 |
+
wrap=True
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
gr.Markdown("### Correlation Matrix")
|
| 375 |
+
with gr.Row():
|
| 376 |
+
corr_plot = gr.Plot(
|
| 377 |
+
value=plot_correlation_matrix(),
|
| 378 |
+
container=True,
|
| 379 |
+
scale=1
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
with gr.Tab("About"):
|
| 383 |
+
gr.Markdown("""
|
| 384 |
+
## About this Dataset
|
| 385 |
+
|
| 386 |
+
The EEG Eye State Classification Dataset contains continuous EEG measurements from 14 electrodes
|
| 387 |
+
collected during different eye states (open/closed).
|
| 388 |
+
|
| 389 |
+
### Key Features:
|
| 390 |
+
- **Total Instances**: 14,980 observations
|
| 391 |
+
- **Features**: 14 EEG channel measurements
|
| 392 |
+
- **Sampling Rate**: 128 Hz
|
| 393 |
+
- **Duration**: ~117 seconds
|
| 394 |
+
- **Device**: Emotiv EEG Neuroheadset
|
| 395 |
+
|
| 396 |
+
### Electrode Placement:
|
| 397 |
+
The 14 channels follow the international 10-20 system:
|
| 398 |
+
- Left hemisphere: AF3, F7, F3, FC5, T7, P7, O1
|
| 399 |
+
- Right hemisphere: O2, P8, T8, FC6, F4, F8, AF4
|
| 400 |
+
|
| 401 |
+
### Citation:
|
| 402 |
+
```
|
| 403 |
+
Rösler, O. (2013). EEG Eye State.
|
| 404 |
+
UCI Machine Learning Repository.
|
| 405 |
+
https://doi.org/10.24432/C57G7J
|
| 406 |
+
```
|
| 407 |
+
|
| 408 |
+
### Links:
|
| 409 |
+
- [Dataset on Hugging Face](https://huggingface.co/datasets/BrainSpectralAnalytics/eeg-eye-state-classification)
|
| 410 |
+
- [Original UCI Repository](https://archive.ics.uci.edu/dataset/264/eeg+eye+state)
|
| 411 |
+
- [Kaggle Example](https://www.kaggle.com/code/beta3logic/eye-state-eeg-classification-model-using-automl)
|
| 412 |
+
""")
|
| 413 |
+
|
| 414 |
+
# Launch application
|
| 415 |
+
if __name__ == "__main__":
|
| 416 |
+
demo.launch(ssr_mode=False)
|