Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- DockerFile +22 -0
- app.py +54 -0
- model_handler.py +33 -0
- requirements.txt +7 -0
DockerFile
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# USE THE OFFICIAL PYTHON 3.9 SLIM IMAGE
|
| 2 |
+
FROM python:3.9-slim
|
| 3 |
+
|
| 4 |
+
# SET THE WORKING DIRECTORY INSIDE THE CONTAINER
|
| 5 |
+
WORKDIR /code
|
| 6 |
+
|
| 7 |
+
# COPY THE REQUIREMENTS FILE FIRST FOR EFFICIENT CACHING
|
| 8 |
+
COPY ./requirements.txt /code/requirements.txt
|
| 9 |
+
|
| 10 |
+
# INSTALL ALL THE REQUIRED LIBRARIES
|
| 11 |
+
RUN pip install --no-cache-dir --upgrade pip -r /code/requirements.txt
|
| 12 |
+
|
| 13 |
+
# COPY THE REST OF YOUR APPLICATION CODE
|
| 14 |
+
COPY ./app.py /code/app.py
|
| 15 |
+
COPY ./model_handler.py /code/model_handler.py
|
| 16 |
+
|
| 17 |
+
# HUGGING FACE SPACES RUNS APPS ON PORT 7860
|
| 18 |
+
EXPOSE 7860
|
| 19 |
+
|
| 20 |
+
# THE COMMAND TO START THE GUNICORN PRODUCTION SERVER
|
| 21 |
+
# IT RUNS THE 'FLASK_APP' OBJECT FROM THE 'app.py' FILE
|
| 22 |
+
CMD ["gunicorn", "--bind", "0.0.0.0:7860", "app:FLASK_APP"]
|
app.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify
|
| 2 |
+
from model_handler import MODEL_HANDLER
|
| 3 |
+
|
| 4 |
+
# INITIALIZING THE FLASK APP
|
| 5 |
+
FLASK_APP = Flask(__name__)
|
| 6 |
+
|
| 7 |
+
# --- API ENDPOINT DEFINITIONS ---
|
| 8 |
+
|
| 9 |
+
@FLASK_APP.route("/", methods=["GET"])
|
| 10 |
+
def health_Check():
|
| 11 |
+
# HEALTH CHECKING ENDPOINT TO CONFIRM THE API IS LIVE
|
| 12 |
+
return jsonify({
|
| 13 |
+
"status": "ok",
|
| 14 |
+
"message": "Semantic Similarity API is operational."
|
| 15 |
+
})
|
| 16 |
+
|
| 17 |
+
@FLASK_APP.route("/predict", methods=["POST"])
|
| 18 |
+
def predict_Handler():
|
| 19 |
+
"""
|
| 20 |
+
HANDLES THE PREDICTION REQUEST.
|
| 21 |
+
"""
|
| 22 |
+
# GETTING THE JSON PAYLOAD FROM THE REQUEST
|
| 23 |
+
input_Payload = request.get_json()
|
| 24 |
+
|
| 25 |
+
# VALIDATING THE INCOMING DATA
|
| 26 |
+
if not input_Payload:
|
| 27 |
+
return jsonify({"error": "BAD REQUEST: Missing JSON body."}), 400
|
| 28 |
+
|
| 29 |
+
text1_Value = input_Payload.get("text1")
|
| 30 |
+
text2_Value = input_Payload.get("text2")
|
| 31 |
+
|
| 32 |
+
if not text1_Value or not text2_Value:
|
| 33 |
+
return jsonify({"error": "BAD REQUEST: 'text1' and 'text2' are required fields."}), 400
|
| 34 |
+
|
| 35 |
+
# PROCESSING THE REQUEST AND GET THE SCORE
|
| 36 |
+
try:
|
| 37 |
+
# USING THE MODEL HANDLER TO GET THE SIMILARITY SCORE
|
| 38 |
+
similarityScore = MODEL_HANDLER.calculate_Similarity(text1_Value, text2_Value)
|
| 39 |
+
|
| 40 |
+
# THE RESPONSE BODY
|
| 41 |
+
response_Body = {
|
| 42 |
+
"similarity_score": similarityScore
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
return jsonify(response_Body), 200
|
| 46 |
+
|
| 47 |
+
except Exception as e:
|
| 48 |
+
# CATCHING ANY UNEXPECTED ERRORS
|
| 49 |
+
print(f"INTERNAL ERROR: {e}")
|
| 50 |
+
return jsonify({"error": "An internal server error occurred."}), 500
|
| 51 |
+
|
| 52 |
+
if __name__ == "__main__":
|
| 53 |
+
# THIS PART IS ONLY FOR LOCAL TESTING. GUNICORN WILL RUN THE APP ON HUGGING FACE
|
| 54 |
+
FLASK_APP.run(host="0.0.0.0", port=8000, debug=True)
|
model_handler.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sentence_transformers.cross_encoder import CrossEncoder
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
class SimilarityModelHandler:
|
| 5 |
+
# HOLDING THE MODEL INSTANCE TO PREVENT RELOADING
|
| 6 |
+
SIMILARITY_MODEL_INSTANCE = None
|
| 7 |
+
|
| 8 |
+
def __init__(self):
|
| 9 |
+
# CONSTRUCTOR: LOADING THE MODEL IF IT DOESN'T EXIST
|
| 10 |
+
if not SimilarityModelHandler.SIMILARITY_MODEL_INSTANCE:
|
| 11 |
+
print("INITIALIZING AND LOADING THE MODEL...")
|
| 12 |
+
# CHECKING FOR GPU, FALLBACK TO CPU
|
| 13 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 14 |
+
print(f"SERVICE IS RUNNING ON DEVICE: {device}")
|
| 15 |
+
|
| 16 |
+
# LOADING THE PRE-TRAINED CROSS-ENCODER MODEL
|
| 17 |
+
model_Name = 'cross-encoder/stsb-roberta-large'
|
| 18 |
+
SimilarityModelHandler.SIMILARITY_MODEL_INSTANCE = CrossEncoder(model_Name, device=device)
|
| 19 |
+
print("MODEL LOADED SUCCESSFULLY.")
|
| 20 |
+
|
| 21 |
+
def calculate_Similarity(self, text_One: str, text_Two: str) -> float:
|
| 22 |
+
"""
|
| 23 |
+
CALCULATES THE SIMILARITY SCORE BETWEEN TWO TEXTS.
|
| 24 |
+
"""
|
| 25 |
+
# GETTING THE SCORE FROM THE MODEL( 0-1 )
|
| 26 |
+
finalScore = self.SIMILARITY_MODEL_INSTANCE.predict([(text_One, text_Two)])
|
| 27 |
+
|
| 28 |
+
# CONVERTING FROM NUMPY ARRAY TO A SIMPLE FLOAT
|
| 29 |
+
return finalScore.item()
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# CREATING A SINGLE INSTANCE TO BE USED BY THE API
|
| 33 |
+
MODEL_HANDLER = SimilarityModelHandler()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Libraries for the model
|
| 2 |
+
sentence-transformers>=2.2.0
|
| 3 |
+
torch>=1.9.0
|
| 4 |
+
|
| 5 |
+
# Libraries for the API server
|
| 6 |
+
Flask>=2.0.0
|
| 7 |
+
gunicorn>=20.0.0
|