File size: 11,163 Bytes
7dd775e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import os
import re
from typing import Dict, List

from huggingface_hub import InferenceClient

# =========================================================
# HUGGING FACE INFERENCE CLIENT
# =========================================================

HF_API_TOKEN = os.getenv("HF_API_TOKEN")  # optional, set in HF Space secrets
if HF_API_TOKEN:
    client = InferenceClient(token=HF_API_TOKEN)
else:
    client = InferenceClient()  # anonymous for public models (rate-limited)

# Model IDs
TOX_MODEL_ID = "unitary/toxic-bert"
OFF_MODEL_ID = "cardiffnlp/twitter-roberta-base-offensive"
EMO_MODEL_ID = "j-hartmann/emotion-english-distilroberta-base"
SENT_MODEL_ID = "distilbert-base-uncased-finetuned-sst-2-english"

# =========================================================
# RULE KEYWORDS / PATTERNS
# =========================================================

AGGRESSION_KEYWORDS = [
    "stupid", "idiot", "dumb", "incompetent", "useless",
    "trash", "garbage", "worthless", "pathetic", "clown",
    "moron", "failure", "shut up", "hate you"
]

THREAT_PHRASES = [
    "you will regret", "there will be consequences", "watch your back",
    "this is your last warning", "i'm coming for you",
    "or else", "i'll ruin you", "i'll make you pay",
    "i am gonna hurt you", "i'm going to hurt you",
    "im gonna hurt you",  # <-- added for your exact example
]

PROFANITY = [
    "fuck", "shit", "bitch", "asshole", "bastard",
    "motherfucker", "prick", "dickhead"
]

POLITE_KEYWORDS = [
    "please", "thank you", "thanks", "would you mind",
    "if possible", "kindly", "when you have a chance",
    "if you don't mind"
]

FRIENDLY_KEYWORDS = [
    "awesome", "amazing", "great job", "fantastic",
    "love this", "appreciate you", "good vibes",
    "wonderful", "you're the best", "you are the best",
]

SARCASM_PATTERNS = [
    r"yeah right",
    r"sure you did",
    r"great job (idiot|genius)",
    r"nice work (moron|buddy)",
    r"well done.*not",
    r"nice job.*not",
]

# Generic threat regex: “gonna/going to/will hurt you”
THREAT_REGEX = re.compile(r"\b(gonna|going to|will)\s+hurt you\b")


# =========================================================
# HF INFERENCE HELPERS
# =========================================================

def _safe_text_classification(model_id: str, text: str) -> List[Dict]:
    """
    Wrapper around HF Inference API text classification.

    Returns a list of dicts like:
    [
      {"label": "POSITIVE", "score": 0.95},
      ...
    ]
    or [] on error.
    """
    try:
        out = client.text_classification(text, model=model_id)
        # Some clients may return a single dict; normalize to list
        if isinstance(out, dict):
            return [out]
        return out or []
    except Exception as e:
        print(f"[WARN] HF Inference error for {model_id}: {e}")
        return []


def _get_sentiment(text: str):
    """
    Returns (pos, neg) based on distilbert sentiment.
    """
    results = _safe_text_classification(SENT_MODEL_ID, text)
    pos = 0.5
    neg = 0.5

    if results:
        scores = {r["label"].upper(): float(r["score"]) for r in results}
        # typical labels: POSITIVE / NEGATIVE
        if "POSITIVE" in scores:
            pos = scores["POSITIVE"]
            neg = 1.0 - pos
        elif "NEGATIVE" in scores:
            neg = scores["NEGATIVE"]
            pos = 1.0 - neg

    return pos, neg


def _get_toxicity(text: str) -> float:
    """
    Return a toxicity-like score in [0, 1].
    For unitary/toxic-bert, we consider any 'toxic-like' label as signal.
    """
    results = _safe_text_classification(TOX_MODEL_ID, text)
    if not results:
        return 0.0

    toxic_score = 0.0
    for r in results:
        label = r["label"].lower()
        if any(key in label for key in ["toxic", "obscene", "insult", "hate", "threat"]):
            toxic_score = max(toxic_score, float(r["score"]))
    return toxic_score


def _get_offensive(text: str) -> float:
    """
    Return an offensive score in [0, 1].
    For cardiffnlp/twitter-roberta-base-offensive, look for OFFENSE-like labels.
    """
    results = _safe_text_classification(OFF_MODEL_ID, text)
    if not results:
        return 0.0

    off_score = 0.0
    for r in results:
        label = r["label"].lower()
        if "offense" in label or "offensive" in label:
            off_score = max(off_score, float(r["score"]))
    return off_score


def _get_emotions(text: str):
    """
    Returns a dict like {"anger": 0.3, "joy": 0.6}.
    """
    results = _safe_text_classification(EMO_MODEL_ID, text)
    if not results:
        return {"anger": 0.0, "joy": 0.0}

    emo = {}
    for r in results:
        emo[r["label"].lower()] = float(r["score"])

    anger = emo.get("anger", 0.0)
    joy = emo.get("joy", 0.0)
    return {"anger": anger, "joy": joy}


# =========================================================
# MAIN CLASSIFIER (STRICT OPTION A)
# =========================================================

def classify_tone_rich(text: str):
    lowered = text.lower()
    explanation = []

    # --- Model signals ---
    pos, neg = _get_sentiment(text)
    tox_score = _get_toxicity(text)
    off_score = _get_offensive(text)
    emo = _get_emotions(text)
    anger = emo.get("anger", 0.0)
    joy = emo.get("joy", 0.0)

    explanation.append(f"Sentiment pos={pos:.2f}, neg={neg:.2f}")
    explanation.append(f"Toxicity={tox_score:.2f}, Offensive={off_score:.2f}")
    explanation.append(f"Emotion anger={anger:.2f}, joy={joy:.2f}")

    # --- Rule flags ---
    has_insult = any(w in lowered for w in AGGRESSION_KEYWORDS)

    # THREATS: list OR generic regex
    has_threat_phrase = any(p in lowered for p in THREAT_PHRASES)
    has_threat_regex = bool(THREAT_REGEX.search(lowered))
    has_threat = has_threat_phrase or has_threat_regex

    has_profanity = any(bad in lowered for bad in PROFANITY)
    has_polite = any(w in lowered for w in POLITE_KEYWORDS)
    has_friendly = any(w in lowered for w in FRIENDLY_KEYWORDS)
    has_sarcasm = any(re.search(p, lowered) for p in SARCASM_PATTERNS)

    if has_insult:
        explanation.append("Detected explicit insult keyword.")
    if has_threat_phrase:
        explanation.append("Detected explicit threat phrase.")
    if has_threat_regex:
        explanation.append("Matched generic threat pattern (gonna/going to/will hurt you).")
    if has_profanity:
        explanation.append("Detected profanity.")
    if has_polite:
        explanation.append("Detected polite phrasing.")
    if has_friendly:
        explanation.append("Detected friendly / appreciative wording.")
    if has_sarcasm:
        explanation.append("Matched a sarcasm pattern.")

    # =====================================================
    # STRICT AGGRESSIVE RULES
    # =====================================================

    # 1) Threats override everything
    if has_threat:
        return {
            "label": "Aggressive",
            "confidence": 95,
            "severity": 95,
            "threat_score": 95,
            "politeness_score": 0,
            "friendly_score": 0,
            "has_threat": True,
            "has_profanity": has_profanity,
            "has_sarcasm": has_sarcasm,
            "explanation": explanation,
        }

    # 2) Profanity → aggressive
    if has_profanity:
        sev = max(85, int((tox_score + off_score) / 2 * 100))
        return {
            "label": "Aggressive",
            "confidence": 90,
            "severity": sev,
            "threat_score": int(tox_score * 100),
            "politeness_score": 0,
            "friendly_score": 0,
            "has_threat": has_threat,
            "has_profanity": True,
            "has_sarcasm": has_sarcasm,
            "explanation": explanation,
        }

    # 3) Direct insults → aggressive
    if has_insult:
        sev = max(80, int((tox_score + off_score) / 2 * 100))
        return {
            "label": "Aggressive",
            "confidence": 88,
            "severity": sev,
            "threat_score": int(tox_score * 100),
            "politeness_score": 0,
            "friendly_score": 0,
            "has_threat": has_threat,
            "has_profanity": has_profanity,
            "has_sarcasm": has_sarcasm,
            "explanation": explanation,
        }

    # 4) Sarcasm + negative sentiment → aggressive
    if has_sarcasm and neg > 0.55:
        return {
            "label": "Aggressive",
            "confidence": 85,
            "severity": 85,
            "threat_score": int(tox_score * 100),
            "politeness_score": 0,
            "friendly_score": 0,
            "has_threat": has_threat,
            "has_profanity": has_profanity,
            "has_sarcasm": True,
            "explanation": explanation,
        }

    # 5) High anger + toxicity
    if anger + tox_score > 1.1:
        return {
            "label": "Aggressive",
            "confidence": 80,
            "severity": 80,
            "threat_score": int(tox_score * 100),
            "politeness_score": 0,
            "friendly_score": 0,
            "has_threat": has_threat,
            "has_profanity": has_profanity,
            "has_sarcasm": has_sarcasm,
            "explanation": explanation,
        }

    # =====================================================
    # POSITIVE LABELS – FRIENDLY / POLITE
    # =====================================================
    if has_friendly and pos > 0.60:
        return {
            "label": "Friendly",
            "confidence": int(pos * 100),
            "severity": 0,
            "threat_score": int(tox_score * 100),
            "politeness_score": int(pos * 100),
            "friendly_score": int(pos * 100),
            "has_threat": has_threat,
            "has_profanity": has_profanity,
            "has_sarcasm": has_sarcasm,
            "explanation": explanation,
        }

    if has_polite and pos > 0.50:
        return {
            "label": "Polite",
            "confidence": int(pos * 100),
            "severity": 0,
            "threat_score": int(tox_score * 100),
            "politeness_score": int(pos * 100),
            "friendly_score": 0,
            "has_threat": has_threat,
            "has_profanity": has_profanity,
            "has_sarcasm": has_sarcasm,
            "explanation": explanation,
        }

    # =====================================================
    # NEUTRAL FALLBACK
    # =====================================================
    return {
        "label": "Neutral",
        "confidence": int((1 - neg) * 100),
        "severity": 0,
        "threat_score": int(tox_score * 100),
        "politeness_score": int(pos * 100),
        "friendly_score": int(pos * 100),
        "has_threat": has_threat,
        "has_profanity": has_profanity,
        "has_sarcasm": has_sarcasm,
        "explanation": explanation,
    }


# Optional wrapper for backwards compatibility
def classify_tone(text: str):
    r = classify_tone_rich(text)
    aggressive_prob = r["severity"] / 100.0
    positive_prob = r["friendly_score"] / 100.0
    return r["label"], r["confidence"], aggressive_prob, positive_prob