File size: 10,313 Bytes
61d360d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import os
import uuid
import gc
from typing import Optional
from fastapi import FastAPI, File, UploadFile, HTTPException, BackgroundTasks
from fastapi.responses import FileResponse
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
import logging
import traceback
import shutil
import torch
from deblur_module import NAFNetDeblur, setup_logger
# Configure logging
logger = setup_logger(__name__)
# Define API URL
API_URL = "http://localhost:8001"
# Initialize FastAPI app
app = FastAPI(
title="NAFNet Debluring API",
description="API for deblurring images using NAFNet deep learning model",
version="1.0.0"
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize NAFNet model
model = None
processing_lock = False
def get_model():
global model
if model is None:
logger.info("Initializing NAFNet deblurring model...")
try:
model = NAFNetDeblur()
logger.info("Model initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize model: {str(e)}")
logger.error(traceback.format_exc())
raise RuntimeError(f"Could not initialize NAFNet model: {str(e)}")
return model
def cleanup_resources(input_path=None):
"""Clean up resources after processing"""
# Force garbage collection
gc.collect()
# Clean up CUDA memory if available
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Remove input file if specified
if input_path and os.path.exists(input_path):
try:
os.remove(input_path)
logger.info(f"Removed temporary input file: {input_path}")
except Exception as e:
logger.warning(f"Could not remove temporary input file: {str(e)}")
# Release processing lock
global processing_lock
processing_lock = False
logger.info("Resources cleaned up")
@app.get("/")
async def root():
return {"message": "NAFNet Debluring API is running"}
@app.post("/deblur/", response_class=FileResponse)
async def deblur_image(background_tasks: BackgroundTasks, file: UploadFile = File(...)):
"""
Deblur an uploaded image and return the processed image file.
"""
global processing_lock
input_path = None
# Check if another processing request is currently running
if processing_lock:
logger.warning("Another deblurring request is already in progress")
raise HTTPException(
status_code=429,
detail="Server is busy processing another image. Please try again shortly."
)
# Set processing lock
processing_lock = True
try:
# Validate file type
if not file.content_type.startswith("image/"):
logger.warning(f"Invalid file type: {file.content_type}")
processing_lock = False # Release lock
raise HTTPException(status_code=400, detail="File must be an image")
logger.info(f"Processing image: {file.filename}, size: {file.size} bytes, type: {file.content_type}")
# Create input and output directories
module_dir = os.path.dirname(os.path.abspath(__file__))
input_dir = os.path.join(module_dir, 'inputs')
output_dir = os.path.join(module_dir, 'outputs')
os.makedirs(input_dir, exist_ok=True)
os.makedirs(output_dir, exist_ok=True)
# Generate unique filenames
unique_id = uuid.uuid4().hex
input_filename = f"input_{unique_id}.png"
input_path = os.path.join(input_dir, input_filename)
output_filename = f"deblurred_{unique_id}.png"
output_path = os.path.join(output_dir, output_filename)
try:
# Read file contents first
file_contents = await file.read()
# Save uploaded file to disk
with open(input_path, "wb") as buffer:
buffer.write(file_contents)
logger.info(f"Input image saved to: {input_path}")
# Release file resources immediately
await file.close()
# Get the model
deblur_model = get_model()
# Process the image
logger.info("Starting deblurring process...")
deblurred_img = deblur_model.deblur_image(input_path)
# Save the result
deblur_model.save_image(deblurred_img, output_filename)
logger.info(f"Image deblurred successfully, saved to: {output_path}")
# Schedule cleanup after response is sent
background_tasks.add_task(cleanup_resources, input_path)
# Return the result file
return FileResponse(
output_path,
media_type="image/png",
filename=f"deblurred_{file.filename}"
)
except Exception as e:
logger.error(f"Error in deblurring process: {str(e)}")
logger.error(traceback.format_exc())
# Always attempt cleanup on error
cleanup_resources(input_path)
raise HTTPException(status_code=500, detail=f"Deblurring failed: {str(e)}")
except HTTPException:
# Re-raise HTTP exceptions
raise
except Exception as e:
error_msg = f"Error processing image: {str(e)}"
logger.error(error_msg)
logger.error(traceback.format_exc())
# Make sure lock is released
processing_lock = False
raise HTTPException(status_code=500, detail=error_msg)
@app.get("/status/")
async def status():
"""Check API status and model availability."""
try:
logger.info("Checking model status")
# Check if we're currently processing
if processing_lock:
return {
"status": "busy",
"model_loaded": True,
"message": "Currently processing an image"
}
# Otherwise do a full check
deblur_model = get_model()
# Get memory stats if CUDA is available
memory_info = {}
if torch.cuda.is_available():
memory_info["cuda_memory_allocated"] = f"{torch.cuda.memory_allocated() / 1024**2:.2f} MB"
memory_info["cuda_memory_reserved"] = f"{torch.cuda.memory_reserved() / 1024**2:.2f} MB"
memory_info["cuda_max_memory"] = f"{torch.cuda.max_memory_allocated() / 1024**2:.2f} MB"
logger.info("Model is loaded and ready")
return {
"status": "ok",
"model_loaded": True,
"processing": processing_lock,
"memory": memory_info
}
except Exception as e:
error_msg = f"Error checking model status: {str(e)}"
logger.error(error_msg)
return {"status": "error", "model_loaded": False, "error": str(e)}
@app.get("/clear-memory/")
async def clear_memory():
"""Force clear memory and release resources."""
try:
# Force garbage collection
gc.collect()
# Clear CUDA cache if available
if torch.cuda.is_available():
before = torch.cuda.memory_allocated() / 1024**2
torch.cuda.empty_cache()
after = torch.cuda.memory_allocated() / 1024**2
logger.info(f"CUDA memory cleared: {before:.2f} MB → {after:.2f} MB")
# Reset processing lock
global processing_lock
was_locked = processing_lock
processing_lock = False
return {
"status": "ok",
"message": "Memory cleared successfully",
"lock_released": was_locked
}
except Exception as e:
error_msg = f"Error clearing memory: {str(e)}"
logger.error(error_msg)
return {"status": "error", "error": str(e)}
@app.get("/diagnostics/")
async def diagnostics():
"""Get diagnostic information about the system."""
try:
# Check required components
import platform
import sys
import torch
import cv2
import numpy as np
# Collect system information
system_info = {
"platform": platform.platform(),
"python_version": sys.version,
"torch_version": torch.__version__,
"cuda_available": torch.cuda.is_available(),
"opencv_version": cv2.__version__,
"numpy_version": np.__version__,
}
# Get GPU information if available
if torch.cuda.is_available():
system_info["cuda_version"] = torch.version.cuda
system_info["cuda_device_count"] = torch.cuda.device_count()
system_info["cuda_current_device"] = torch.cuda.current_device()
system_info["cuda_device_name"] = torch.cuda.get_device_name(0)
system_info["cuda_memory_allocated"] = f"{torch.cuda.memory_allocated() / 1024**2:.2f} MB"
system_info["cuda_memory_reserved"] = f"{torch.cuda.memory_reserved() / 1024**2:.2f} MB"
# Check model state
if model is not None:
system_info["model_loaded"] = True
else:
system_info["model_loaded"] = False
# Check disk space
if os.name == 'posix': # Linux/Mac
import shutil
total, used, free = shutil.disk_usage("/")
system_info["disk_total"] = f"{total // (2**30)} GB"
system_info["disk_used"] = f"{used // (2**30)} GB"
system_info["disk_free"] = f"{free // (2**30)} GB"
return {
"status": "ok",
"system_info": system_info
}
except Exception as e:
error_msg = f"Error gathering diagnostics: {str(e)}"
logger.error(error_msg)
logger.error(traceback.format_exc())
return {"status": "error", "error": str(e)}
def run_server(host="0.0.0.0", port=8001):
"""Run the FastAPI server"""
uvicorn.run(app, host=host, port=port)
if __name__ == "__main__":
run_server() |