Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
license: mit
|
| 4 |
+
tags:
|
| 5 |
+
- recommendation-system
|
| 6 |
+
- collaborative-filtering
|
| 7 |
+
- matrix-factorization
|
| 8 |
+
- movielens
|
| 9 |
+
- svd
|
| 10 |
+
- internship-task
|
| 11 |
+
datasets:
|
| 12 |
+
- movielens
|
| 13 |
+
model-index:
|
| 14 |
+
- name: DataSynthis_ML_JobTask
|
| 15 |
+
results:
|
| 16 |
+
- task:
|
| 17 |
+
type: recommendation
|
| 18 |
+
name: Movie Recommendation
|
| 19 |
+
dataset:
|
| 20 |
+
name: MovieLens
|
| 21 |
+
type: movielens
|
| 22 |
+
metrics:
|
| 23 |
+
- type: precision@k
|
| 24 |
+
value: 0.7460454747522295
|
| 25 |
+
- type: recall@k
|
| 26 |
+
value: 0.5147626084794534
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
# 🎬 Movie Recommendation System (DataSynthis ML Job Task)
|
| 30 |
+
|
| 31 |
+
This model was built using the MovieLens dataset for the **ML Engineer Intern task**.
|
| 32 |
+
|
| 33 |
+
### Features
|
| 34 |
+
Item-based Collaborative Filtering
|
| 35 |
+
Matrix Factorization (SVD)
|
| 36 |
+
Evaluation Metrics: Precision@K, Recall@K, NDCG
|
| 37 |
+
|
| 38 |
+
### How to Use
|
| 39 |
+
```python
|
| 40 |
+
from joblib import load
|
| 41 |
+
model = load("model.joblib")
|
| 42 |
+
# Use recommend_movies(user_id, N) function
|