1 Robust Open-Vocabulary Translation from Visual Text Representations Machine translation models have discrete vocabularies and commonly use subword segmentation techniques to achieve an 'open vocabulary.' This approach relies on consistent and correct underlying unicode sequences, and makes models susceptible to degradation from common types of noise and variation. Motivated by the robustness of human language processing, we propose the use of visual text representations, which dispense with a finite set of text embeddings in favor of continuous vocabularies created by processing visually rendered text with sliding windows. We show that models using visual text representations approach or match performance of traditional text models on small and larger datasets. More importantly, models with visual embeddings demonstrate significant robustness to varied types of noise, achieving e.g., 25.9 BLEU on a character permuted German-English task where subword models degrade to 1.9. 3 authors · Apr 16, 2021
26 Pre-trained Large Language Models Learn Hidden Markov Models In-context Hidden Markov Models (HMMs) are foundational tools for modeling sequential data with latent Markovian structure, yet fitting them to real-world data remains computationally challenging. In this work, we show that pre-trained large language models (LLMs) can effectively model data generated by HMMs via in-context learning (ICL)x2013their ability to infer patterns from examples within a prompt. On a diverse set of synthetic HMMs, LLMs achieve predictive accuracy approaching the theoretical optimum. We uncover novel scaling trends influenced by HMM properties, and offer theoretical conjectures for these empirical observations. We also provide practical guidelines for scientists on using ICL as a diagnostic tool for complex data. On real-world animal decision-making tasks, ICL achieves competitive performance with models designed by human experts. To our knowledge, this is the first demonstration that ICL can learn and predict HMM-generated sequencesx2013an advance that deepens our understanding of in-context learning in LLMs and establishes its potential as a powerful tool for uncovering hidden structure in complex scientific data. 5 authors · Jun 8, 2025 3
1 Proving membership in LLM pretraining data via data watermarks Detecting whether copyright holders' works were used in LLM pretraining is poised to be an important problem. This work proposes using data watermarks to enable principled detection with only black-box model access, provided that the rightholder contributed multiple training documents and watermarked them before public release. By applying a randomly sampled data watermark, detection can be framed as hypothesis testing, which provides guarantees on the false detection rate. We study two watermarks: one that inserts random sequences, and another that randomly substitutes characters with Unicode lookalikes. We first show how three aspects of watermark design -- watermark length, number of duplications, and interference -- affect the power of the hypothesis test. Next, we study how a watermark's detection strength changes under model and dataset scaling: while increasing the dataset size decreases the strength of the watermark, watermarks remain strong if the model size also increases. Finally, we view SHA hashes as natural watermarks and show that we can robustly detect hashes from BLOOM-176B's training data, as long as they occurred at least 90 times. Together, our results point towards a promising future for data watermarks in real world use. 3 authors · Feb 16, 2024